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D4-quartic fields
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Abstract

We prove that the number of quartic fields K with discriminant
|∆K | ≤ X whose Galois closure isD4 equals CX+O(X5/8+ε), improv-
ing the error term in a well-known result of Cohen, Diaz y Diaz, and
Olivier. We prove an analogous result for counting quartic dihedral
extensions over an arbitrary base field.

1 Introduction

Let Nn(G,X) be the number of degree n number fields with Galois closure G
and discriminant |∆K | ≤ X . It is an interesting problem to find asymptotic
expressions for Nn(G,X). This is the subject of conjectures of Malle and
Bhargava. Among other things, this is connected to the inverse Galois prob-
lem and the Cohen–Lenstra heuristics for class groups. See, for example, the
papers [Bha07, CL84, Mal10, Mal04, Klu05].

In this investigation, we will focus on quartic fields whose Galois closure
is D4, the symmetry group of a square. Our first result is as follows:

Theorem 1. We have

N4(D4, X) = CX +O(X5/8+ε)

where

C =
1

2

∑

[k:Q]=2

1

2r2(k)∆2
k

ζ∗k(1)

ζk(2)
.
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Here ζk(s) denotes the Dedekind zeta function of k and ζ∗(1) denotes the
first non-vanishing Laurent coefficient of ζ(s) at s = 1. As is customary, r1(k)
and 2r2(k) denote the number of real and complex embeddings, respectively.

Previously, Cohen, Diaz y Diaz, and Olivier (see [CDyDO02]) proved that
N4(D4, X) = CX + O(X3/4+ε). In later numerical work (see [CDyDO06]),
they suggest that it is “reasonable to conjecture” that the error is O(X1/2+ε),
and that there may be a secondary term. Theorem 1 strengthens the error
term in their result. Our proof follows their approach and appeals to some
of the calculations in Section 3 of [CDyDO02], but we do not make explicit
use of the same Dirichlet series. See Remark 1 in §6 for additional comments
on their conjecture in the context of our proof.

In the course of proving Theorem 1, we establish a result for counting
relative quadratic extensions for which the implicit constant in the error
term only depends on the degree of the base field. The original asymptotic
for this counting problem was given in [DW88].

Theorem 2. Let k be a number field of degree n ≥ 2. We have

∑

[K:k]=2
N(∆K/k)≤X

1 =
1

2r2(k)
ζ∗k(1)

ζk(2)
X +

|Cl(k)[2]| ·















O
(

|∆k|1/3 log |∆k|X1/2 logX
)

n = 2 ,

O
(

|∆k|1/4(log |∆k|)2X1/2(logX)3
)

n = 3 ,

On

(

|∆k|
1

n+1X1− 2
n+1 (logX)n−1

)

n > 3 .

In the above, Cl(k)[2] denotes the 2-torsion subgroup of the class group
of k.

The referee pointed out that our methods also prove a similar result for
D4-quartic extensions over an arbitrary base field, and therefore we also
include the following:

Theorem 3. Let F be a number field of degree n ≥ 2. The number of quartic
extensions K/F with N(∆K/F ) ≤ X whose Galois closure is D4 equals





1

2

∑

[k:F ]=2

1

2r2(k)N(∆k/F )2
ζ∗k(1)

ζk(2)



X+On

(

|Cl(F )[2]|3 · |∆F |
2

2n+1
+εX1− 2

2n+1
+ε
)

.
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In the above, ∆L/M denotes the relative discriminant and N denotes the
absolute norm.

We note in passing that other variations on the problem of counting
D4-quartic fields have been investigated, including counting the fields when
ordered by their Artin conductor (see [ASVW21, BFSLV22, Fri21]).

Late in the preparation of this manuscript we became aware that Barquero-
Sanchez, Masri, and Thorne (see Theorem 2.4 of [BSMT23]) already obtained
an improvement to O(X5/7+ε) for the closely related problem of counting D4-
quartic fields that are totally imaginary extensions of totally real quadratic
fields.

2 Initial setup

The following is a truncated version of Corollary 2.2 of [CDyDO02]:
∑

[k:Q]=2

|∆k|≤
√
X

∑

[K:k]=2
N(∆K/k)≤X/∆2

k

1 = 2
∑

[K:Q]=4
G(K/Q)≃D4

|∆K |≤X

1 +
∑

[K:Q]=4
G(K/Q)≃C4

|∆K |≤X

1 + 3
∑

[K:Q]=4
G(K/Q)≃V4

|∆K |≤X

1 . (1)

In words, counting extensions that are quadratic over quadratic picks up
every D4-quartic (up to isomorphism) exactly twice, every V4-quartic exactly
three times, and every C4-quartic exactly once. This is observed in the
following field diagram for the Galois closure L of a generic D4-quartic field
K1. (Every line stands for a degree 2 extension.)

Q

k1 k2 k3

K1 K2 k1k3 K3 K4

L
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The truncations in the subscripts in (1) follow immediately from the identity
∆K = N(∆K/k)∆

2
k.

The first term on the right of (1) is what we want to count. The next two
terms on the right are O(

√
X) and O(

√
X(logX)2), respectively (see [Bai80,

Mäk93]). The main task is to deal with the innermost sum on the left, which
counts relative quadratic extensions.

3 Counting relative quadratic extensions

In this section, we consider the problem of counting quadratic extensions
over an arbitrary base field k of degree n, which will ultimately lead to the
proof of Theorem 2.

3.1 Parametrizing relative quadratics

We parametrize all quadratic extensions K/k in terms of data from k. (We
refer the reader to [CDyDO02] for the proofs of the results in this subsection.)
Let V (k) denote the set of all u ∈ k∗ such that (u) = q2 for some ideal q.
Write S(k) = V (k)/(k∗)2. This is the 2-Selmer group of k. Given an element
u ∈ S(k) we will always tacitly assume (u, 2) = 1. Let A(k) denote the set
of all integral squarefree ideals a such that a ∈ Cl(k)2.

There is a bijection

A(k)× S(k) → {[K : k] ≤ 2} .

Under this map, a pair (a, u) corresponds to an extension K/k, and the
“identity” corresponds to the trivial extension.

We wish to determine the discriminant ∆K/k in terms of (a, u). To this
end, we define an ideal c(a, u) in the following way. Given (a, u), first write
aq2 = (α0) with (q, 2) = 1; then let c be the largest ideal such that c | 2,
(c, a) = 1, and x2 ≡ α0u (mod c2) is solvable (in the multiplicative sense).
One checks that this definition is independent of the choices involved. Then
one has

∆K/k =
4a

c2
.

4



3.2 A formula for the number of relative quadratics

Using the parametrization from §3.1, we derive an expression for the number
of quadratic extensions K/k with N(∆K/k) ≤ X . The reader should compare
this result to Theorem 1.1 of [CDyDO02].

Lemma 1. Let k be a number field of degree n. One has

∑

[K:k]=2
N(∆K/k)≤X

1 = −1 + 2r1(k)+r2(k)
∑

d|2

1

N(d)

∑

χ∈Ĉl
d2(k)

χ2=χ0

∑

c|d
µ

(

d

c

)

∑

a squarefree

N(a)≤N(c2)
4n

X

χ(a) , (2)

where Cld2(k) is the ray class group of k modulo d2, and
∑

χ is over the

characters of Cld2(k) satisfying χ
2 = χ0.

Proof. For notational ease, we write A = A(k) and S = S(k). We observe

∑

[K:k]=2
N(∆K/k)≤X

1 = −1 +
∑

a∈A

∑

u∈S
N
(

4a
c(a,u)2

)

≤X

1 (3)

= −1 +
∑

c|2

∑

a∈A
N(a)≤N(c2)

4n
X

∑

u∈S
c(a,u)=c

1 . (4)

First we deal with the innermost sum of (4), which is nonzero only if (a, c) = 1.
For fixed c and a with c | 2 and (c, a) = 1 we have

∑

u∈S
∃x x2≡α0u (mod c2)

1 =
∑

c|d|2
(d,a)=1

∑

u∈S
c(a,u)=d

1 =
∑

d| 2
c

(d,a)=1

∑

u∈S
c(a,u)=dc

1

and therefore, using Möbius inversion, we obtain

∑

u∈S
c(a,u)=c

1 =
∑

d| 2
c

(d,a)=1

µ(d)
∑

u∈S
∃x x2≡α0u (mod c2d2)

1 . (5)
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Plugging (5) into (4) yields

∑

[K:k]=2
N(∆K/k)≤X

1 = −1 +
∑

c|2

∑

a∈A
(a,c)=1

N(a)≤N(c2)
4n

X

∑

d| 2
c

(d,a)=1

µ(d)
∑

u∈S
∃x x2≡α0u (mod c2d2)

1

= −1 +
∑

e|2

∑

c|e
µ
(e

c

)

∑

a∈A
(e,a)=1

N(a)≤N(c2)
4n

X

∑

u∈S
∃x x2≡α0u (mod e2)

1 . (6)

Proposition 3.9 and Lemma 3.10 of [CDyDO02] together with the orthog-
onality relations give

∑

u∈S
∃x x2≡α0u (mod c2)

1 =

{

2r1(k)+r2(k)|Clc2(k)[2]|N(c)−1 a ∈ Clc2(k)
2

0 a 6∈ Clc2(k)
2

=
2r1(k)+r2(k)

N(c)

∑

χ∈Ĉl
c2(k)

χ2=χ0

χ(a) . (7)

Pugging (7) into (6) leads to the desired result.

4 Sums of ray class characters

Using the formula given in Lemma 1 as a starting point, our goal is to derive
the asymptotic expression for the number of relative quadratics given in
Theorem 2. In order to do this, we will establish two lemmas on sums of ray
class characters.

Let Φ denote the standard generalization of Euler’s totient function to the
ideals of k. Let χ0 denote the principal character modulo m. It is well-known
(see Satz XCV of [Lan18]) that

∑

N(a)≤X

χ0(a) =
Φ(m)

N(m)
ζ∗k(1)X +Ok(X

1− 2
n+1 ) . (8)

However, the implicit constant depends on the number field k. On the other
hand, recently a uniform version of Landau’s method was given by Lowry-
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Duda, Taniguchi, and Thorne (see [LDTT22]). Their Theorem 3 states
∑

N(a)≤X

1 = ζ∗k(1)X +On(|∆k|
1

n+1X1− 2
n+1 (logX)n−1) . (9)

Using (9) one can easily prove a uniform version of (8). We give such a result
that holds for both principal and nonprincipal characters, where the implicit
constant only depends on n = [k : Q].

Lemma 2. Let k be a number field of degree n ≥ 2. Let χ ∈ Ĉlm(k) be a ray
class character of k modulo m with conductor f. Let τ(m) denote the number
of ideal divisors of m. We have

∑

N(a)≤X

χ(a) = δ(χ)
Φ(m)

N(m)
ζ∗k(1)X+On(τ(m)(N(f)|∆k|)

1
n+1X1− 2

n+1 (logX)n−1) ,

where δ(χ) equals 1 if χ = χ0 and 0 otherwise.

Proof. Equation (9), together with the identity
∑

N(a)≤X

χ0(a) =
∑

d|m
µ(d)

∑

N(a)≤X/N(d)

1 ,

allows one to conclude that

∑

N(a)≤X

χ0(a) =
∑

d|m
µ(d)ζ∗k(1)

X

N(d)
+On





∑

d|m
|∆k|

1
n+1

(

X

N(d)

)1− 2
n+1

(logX)n−1





= ζ∗k(1)X
∑

d|m

µ(d)

N(d)

+On



|∆k|
1

n+1X1− 2
n+1 (logX)n−1

∑

d|m

(

1

N(d)

)1− 2
n+1



 .

The last factor in the error term is bounded by τ(m), and the result follows
in the case where χ = χ0.

We now turn to the case where the character is nonprincipal. Invoking
Theorem 5 of [LDTT22], we find that for a nonprincipal primitive ray class
character ψ with conductor f one has

∑

N(a)≤X

ψ(a) = On((N(f)|∆k|)
1

n+1X1− 2
n+1 (logX)n−1) . (10)
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Indeed, Theorem 5 of [LDTT22] applies to the setting of Hecke L-series, as is
indicated in the discussion following the statement of their Theorem 2. One
follows closely the proof of their Theorem 3, making the necessary modifi-
cations. The most significant differences are the absence of a pole at s = 1
and the different functional equation. Ultimately, this leads to replacing
|∆k| with |∆k|N(f) in many of the equations. One possible reference for the
functional equation of a Hecke L-series is Chapter VII of [Neu99].

To extend the estimate in (10) to all nonprincipal ray class characters χ
modulo m, one uses the identity

∑

N(a)≤X

χ(a) =
∑

d|m
µ(d)ψ(d)

∑

N(a)≤X/N(d)

ψ(a) ,

where ψ is the primitive character inducing χ. The result follows.

For our application, we will need to consider sums over squarefree ideals.
To that end, we establish the following lemma. It will be convenient to define
the m-imprimitive Dedekind zeta function as ζmk (s) =

∏

p|m(1−N(p)−s)ζk(s).

Lemma 3. Notation as in Lemma 2. We have

∑

a squarefree
N(a)≤X

χ(a) = δ(χ)
Φ(m)

N(m)

ζ∗k(1)

ζmk (2)
X +

τ(m) ·















O
(

(N(f)|∆k|)1/3 log |∆k| ·X1/2 logX
)

n = 2 ,

O
(

(N(f)|∆k|)1/4(log |∆k|)2 ·X1/2(logX)3
)

n = 3 ,

On

(

(N(f)|∆k|)
1

n+1X1− 2
n+1 (logX)n−1

)

n > 3 .

Proof. To deal with the squarefree condition, we employ the following

∑

a squarefree
N(a)≤X

χ(a) =
∑

N(a)≤X

χ(a)
∑

d2|a
µ(d) (11)

=
∑

N(d)≤X1/2

µ(d)
∑

N(a)≤X/N(d)2

χ(d2)χ(a) .

This identity holds for any character modulo m. Hence, after applying
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Lemma 2, the sum of interest on the lefthand side of (11) is equal to

δ(χ)
∑

N(d)≤X1/2

µ(d)χ(d2)
Φ(m)

N(m)
ζ∗k(1)

X

N(d)2
(12)

+On





∑

N(d)≤X1/2

τ(m)(N(f)|∆k|)
1

n+1

(

X

N(d)2

)1− 2
n+1

(logX)n−1



 .

(13)

It will be useful to write gβ(Z) :=
∑

N(d)≤Z N(d)β as we will need to
consider this function for various values of β. First, we have the estimate

g0(Z) ≪n Z(logZ)
n−1 , (14)

which follows from Exercise 1 on page 231 of [BS66].
In the case where χ = χ0, the first summand (12) above is

Φ(m)

N(m)
ζ∗k(1)X

∑

N(d)≤X1/2

(d,m)=1

µ(d)

N(d)2

=
Φ(m)

N(m)

ζ∗k(1)

ζmk (2)
X +On((log |∆k|)n−1X1/2(logX)n−1) ;

here we have used ζ∗k(1) ≪ (log |∆k|)n−1 (see, for example, [Lou01]) and

∑

N(d)>X1/2

1

N(d)2
≪n

(logX)n−1

X1/2
,

which follows via partial summation from (14).
The second summand (13) becomes

On



τ(m)(N(f)|∆k|)
1

n+1X1− 2
n+1 (logX)n−1

∑

N(d)≤X1/2

1

N(d)2(1−
2

n+1)



 , (15)

and the last factor on the right above becomes gβ(X
1/2) for β = −2 + 4

n+1
.

We now split into cases based on the value of n. To complete the proof, it
only remains to estimate gβ(Z) appropriately in each case.

9



When n ≥ 4, one has β ≤ −6/5 and hence the sum converges and is
bounded as gβ(Z) ≤ ζk(6/5) ≤ ζ(6/5)n. This completes the proof in this
case.

Before proceeding with the remaining cases, we first claim that

g0(Z) ≪n (log |∆k|)n−1Z , (16)

regardless of the value of n. Indeed, when Z ≥ |∆k|, Equation (9) imme-
diately gives the result upon application of ζ∗k(1) ≪ (log |∆k|)n−1. When
Z < |∆k|, we use the estimate (14). This proves the claim.

Suppose n = 2. Using g0(Z) ≪ Z log |∆k| and applying partial summa-
tion we obtain, for −1 < β < 0, gβ(Z) ≪ Zβ+1 log |∆k|. As n = 2 leads to
β = −2/3, this applies and we arrive at a similar conclusion as when n > 3,
but with the error term multiplied by a factor of X1/6 log |∆k|. This proves
the result in the case where n = 2.

Suppose n = 3. In this case, β = −1 and partial summation yields
gβ(Z) ≪ (log |∆k|)2 logZ. Hence we arrive at the same conclusion but with
the error term multiplied by (log |∆k|)2 logX , which proves the result in the
final case.

5 Proof of Theorem 2

We now proceed with the proof of Theorem 2. We can see via Lemma 3 that
the contribution from the principal character in (2) from Lemma 1 is

2r1(k)+r2(k)
∑

d|2

1

N(d)

∑

c|d
µ

(

d

c

)

∑

a squarefree

N(a)≤N(c2)
4n

X

χ0(a)

=
1

2r2(k)
ζ∗k(1)

ζk(2)
X +















O
(

|∆k|1/3 log |∆k|X1/2 logX
)

n = 2 ,

O
(

|∆k|1/4(log |∆k|)2X1/2(logX)3
)

n = 3 ,

On

(

|∆k|
1

n+1X1− 2
n+1 (logX)n−1

)

n > 3 ,

10



where the constant in the main term comes from

2r1(k)+r2(k)

4n





∑

d|2

Φ(d)

N(d)2

∏

p|d

(

1−N(p)−2
)−1

∑

c|d
µ

(

d

c

)

N(c)2





ζ∗k(1)

ζk(2)

=
2r1(k)+r2(k)

4n





∑

d|2
Φ(c)





ζ∗k(1)

ζk(2)

=
1

2r2(k)
ζ∗k(1)

ζk(2)
.

Notice that in this case m = d2 with d | 2 so that τ(m) ≤ τ(4) ≪n 1, and
consequently the dependence on τ(m) is absorbed into the implicit constant.

In our next estimate, it will be useful to note that the total number of
characters being summed over in (2) equals

|Cld2(k)[2]| ≤ |Cl(k)[2]| · Φ(d2) ≤ |Cl(k)[2]| ·N(d)2 .

For simplicity, we first assume n ≥ 4. Again applying Lemma 3, we find
that the contribution in (2) from the nonprincipal characters is bounded by

≪n 2r1(k)+r2(k)
∑

d|2

1

N(d)

∑

χ∈Ĉl
d2 (k)

χ2=χ0
χ 6=χ0

∑

c|d
|∆k|

1
n+1X1− 2

n+1 (logX)n−1 (17)

≪n |Cl(k)[2]| · |∆k|
1

n+1X1− 2
n+1 (logX)n−1 . (18)

As before, some simplifications occur because we are allowed to drop depen-
dence on n. In particular, we have N(f) ≤ N(m) ≤ 4n. In the cases of n = 2
and n = 3, one simply modifies (17) and (18) by substituting the appropriate
expression from the error term in Lemma 3.

6 Proof of Theorem 1

In this section, k will always denote a quadratic field. First note that Gauss’
genus theory (see, for example [Bue89]) tells us that

|Cl(k)[2]| ≤ 2ω(∆k)−1 ≪ |∆k|ε . (19)

11



In the case where k is quadratic, Theorem 2 gives

Nk(Y ) :=
∑

[K:k]=2
N(∆K/k)≤Y

1 =
1

2r2(k)
ζ∗k(1)

ζk(2)
Y +O(|∆k|1/3+εY 1/2 log Y ) . (20)

We also have the weaker estimate

Nk(Y ) ≤
∑

a∈A

∑

u∈S(k)
N(a)≤Y

1 ≤ |S(k)|
∑

N(a)≤Y

1 ≪ 2ω(∆k)Y log |∆k| , (21)

which one can derive from (3), Lemma 3.2 of [CDyDO02], and (16). We
write

Nk(Y ) =
1

2r2(k)
ζ∗k(1)

ζk(2)
Y + Ek(Y ) , (22)

and the left-hand side of (1) becomes

∑

[k:Q]=2

|∆k|≤
√
X

Nk(X/∆
2
k) = X

∑

[k:Q]=2

|∆k|≤
√
X

1

2r2∆2
k

ζ∗k(1)

ζk(2)
+

∑

[k:Q]=2

|∆k|≤
√
X

Ek(X/∆
2
k) .

For 1 ≤ Z ≤
√
X , we have

∑

[k:Q]=2

|∆k|≤
√
X

Ek(X/∆
2
k) ≪

∑

[k:Q]=2
|∆k|≤Z

|∆k|1/3+ε

(

X

∆2
k

)1/2+ε

+
∑

[k:Q]=2

Z<|∆k|≤
√
X

|∆k|ε
(

X

∆2
k

)

≪ X1/2+εZ1/3−ε +XZ−1+ε .

Choosing Z = X3/8, we obtain

∑

[k:Q]=2

|∆k|≤
√
X

∑

[K:k]=2
N(∆K/k)≤X/∆2

k

1 = X
∑

[k:Q]=2

1

2r2∆2
k

ζ∗k(1)

ζk(2)
+O(X5/8+ε) . (23)

Here we have used
∑

[k:Q]=2

|∆k|>
√
X

1

2r2∆2
k

ζ∗k(1)

ζk(2)
≪

∑

[k:Q]=2

|∆k|>
√
X

log |∆k|
∆2

k

≪ X−1/2+ε .

Equations (1) and (23) establish Theorem 1.

12



Remark 1. Note that an improvement of the error term in (23) to O(X1/2+ε)
would prove the conjecture mentioned in §1. Moreover, an improvement to
O(X1/2 logX), if possible, would instantly extract the secondary term as

N4(D4, X) = CX − 3

2
DX1/2(logX)2 +O(X1/2 logX) ,

where the constant D comes from the count N4(V4, X) ∼ DX1/2(logX)2.

7 Proof of Theorem 3

An easy variation on the discussion in §2 allows us to see that in order
to count D4-extensions, as before, it suffices to study extensions K/k/F
that are quadratic over quadratic. For bookkeeping purposes, note that
[k : Q] = 2[F : Q] = 2n. First, we invoke Theorem 2.1 of [KW22] to bound
the 2-torsion of the class group of k as

|Cl(k)[2]| ≪n |Cl(F )[2]|2|∆k|ε . (24)

We adopt the notation from the proof of Theorem 1. The number of
quadratic over quadratic extensions K/k/F equals

∑

[k:F ]=2

NF/Q(∆k/F )≤
√
X

Nk

(

X

NF/Q(∆k/F )2

)

(25)

=
∑

[k:F ]=2

NF/Q(∆k/F )≤
√
X

1

2r2(k)
ζ∗k(1)

ζk(2)

X

NF/Q(∆k/F )2
(26)

+
∑

[k:F ]=2

NF/Q(∆k/F )≤
√
X

Ek

(

X

NF/Q(∆k/F )2

)

. (27)

Since [k : Q] = 2n ≥ 4, Theorem 2 combined with (24) implies

Nk(Y ) =
1

2r2(k)
ζ∗k(1)

ζk(2)
Y +On(|Cl(F )[2]|2|∆k|

1
2n+1

+εY 1− 2
2n+1

+ε) , (28)

which is the analogue of (20) in this context. Additionally, we find

NF (Y ) ≪n |Cl(F )[2]| · |∆F |εY , (29)
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which is the analogue of (21). Using (28) we see that (27) is

≪n |Cl(F )[2]|2|∆F |
2

2n+1
+εX1− 2

2n+1
+ε

∑

[k:F ]=2

NF/Q(∆k/F )≤
√
X

NF/Q(∆k/F )
−2+ 5

2n+1
−ε . (30)

Here we have used the identity |∆k| = |∆F |2NF/Q(∆k/F ). Using partial
summation on (29) one finds, for fixed β < −1,

∑

[k:F ]=2
NF/Q(∆k/F )≤Y

NF/Q(∆k/F )
β ≪n |Cl(F )[2]| · |∆F |ε . (31)

Applying (31) to (30) now gives the result.

Remark 2. If one prefers a version of Theorem 3 in which the dependence
on F is expressed purely in terms of the discriminant, one simply bounds
|Cl(F )[2]| in terms of |∆F |. Indeed, |Cl(F )[2]| ≪n |∆F |α(n)+ε, where the
Brauer–Siegel Theorem allows one to take α(n) = 1/2. More recently, it was
shown (see [BST+20]) that one can take α(n) = 1/2 − 1/(2n) when n ≥ 5
and α(3) = α(4) = 0.2785. Of course, from (19) one can take α(2) = 0. As
an example, when n = 3, one obtains an error of O(|∆F |1.13X5/7+ε).
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