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Abstract

Corruption is notoriously widespread in data collection. Despite extensive research, the

existing literature on corruption predominantly focuses on specific settings and learning

scenarios, lacking a unified view. There is still a limited understanding of how to effectively

model and mitigate corruption in machine learning problems. In this work, we develop a

general theory of corruption from a fresh information-theoretic perspective—with Markov

kernels as a foundational mathematical tool. We generalize the definition of corruption

beyond the concept of distributional shift: corruption includes all modifications of a

learning problem, including changes in model class and loss function. We will focus here

on changes in probability distributions. This perspective leads to three novel opportunities.

First, it enables the construction of a provably exhaustive framework for pairwise Markovian

corruptions that has not been achieved before. The framework not only allows us to study

corruption types based on their input space, but also serves to unify prior works on

specific corruption models and establish a consistent nomenclature. Second, it facilitates a

systematic analysis of the consequences of corruption on learning tasks by comparing Bayes

risks in the clean and corrupted scenarios. This examination sheds light on complexities

arising from joint and dependent corruptions on both labels and attributes, a realm scarcely

explored in existing research. Notably, while label corruptions affect only the loss function,

more intricate cases involving attribute corruptions extend the influence beyond the loss to

affect the hypothesis class. Third, building upon these results, we investigate mitigations for

various corruption types. We expand the existing loss-correction results for label corruption,

including also the dependent type. We identify the necessity to generalize the classical

corruption-corrected learning framework to a new paradigm with weaker requirements, so

as to include other forms of corruptions beyond just labels. Within the latter setting, we

provide a negative result for loss correction in the attribute and the joint corruption case.

Keywords: supervised learning, information theory, Markov kernels, Markovian corruption,

loss correction

1 Introduction

Machine learning starts with data. The most widespread conception of data defines them

as atomic facts, perfectly describing some reality of interest [1]. In learning theories, this is

reflected by the often-used assumption that training and test data are drawn identically and

independently from some fixed probability distribution. The goal of learning then construed

as identifying and synthesizing patterns based on the knowledge, or information, embedded in

these data. In practice, however, corruption regularly occurs in data collection. This creates a

mismatch between training and test distributions, forcing us to learn from imperfect facts.
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We should thus doubt the view of data as static facts, and consider them as a dynamic element

of a learning task [2]. In addition to the traditional emphasis on prediction models and loss

functions in machine learning, one may focus on the data dynamic itself, so as to understand

how different processes may have led us to the observation of certain data, and furthermore,

how they subsequently impact the learning process. While the necessity of investigating this

topic is recognized both at a practical [3, 4, 5] and a theoretical [6, 7] level, no standardized way

to model and analyze the dynamic generative process of data has been so far created.

In the field of machine learning, changes in such dynamic process are often referred to as

distribution shift or noisy data. We prefer the more inclusive terminology corruption, borrowing

it from the computer science literature. Our conceptualization of corruption goes beyond the

definition of distribution shift or noisy data: it encompasses all modifications to a learning

problem, including alterations in the choice of loss function, hypothesis class, or probability

distribution from which we draw the data. We give an interpretation of corruption which

challenges the idea that its effect on a data distribution is inherently pejorative; instead, we

think it as a modification process. Whether the corruption is positive, negative, or neutral,

depends on the specific context in which it is applied. A similar stance has been taken in

the recent work from Mémoli et al. [8], where they additionally propose a pseudo-metric to

quantify the changes in a supervised learning problem under such general corruptions. They

define corruption in an analogous general fashion we envisioned, plus changes in the attribute

and label sets. In the present paper, we specifically focus on modifications of the probability

distribution, aiming to address the lack of understanding of data as a process. However, we

emphasize that this is only one of the possible ways a learning problem can change.

In view of understanding corruption as a dynamic element of learning, there has been a surge

of research focusing on specific data corruption models [9, 10, 11, 12, 13, 14, 15]. However, these

approaches cannot, even in principle, answer questions regarding the comparison of different

types of corruption. Moreover, the absence of a uniform and established nomenclature in the

literature further complicates the situation. A comprehensive framework for data corruption is

needed to overcome these challenges.

Whilst there have been existing attempts to build such a framework, certain limitations persist

in terms of homogeneity and exhaustiveness. A famous early endeavor is Quiñonero-Candela

et al. [14], grouping together works about the multi-faceted topic of dataset shift, yet not

in a unifying or comprehensive manner. Later on, several studies sought to offer a more

homogeneous view of corruption [16, 17, 18, 19]; nonetheless, these frameworks typically rely

on corruption-invariant assumptions of the marginal or conditional probabilities. The extent of

their exhaustiveness in representing all potential corruption models within their framework is

merely conjectured, or left unexplored.

Therefore, the primary objective of this work is to improve the existing understanding of

corruption by introducing an information-theoretic perspective, while making use of the

classical probabilistic approaches. Probability distributions are the only representation of

data that will be used in this work, so the terms “data” and “data distribution” are used

interchangeably. A probabilistic and information-theoretic approach allows us to systematically

study and compare the possible types of corruption in supervised learning problems, providing

a general framework for analyzing their mitigation as an initial step toward unraveling these

fundamental inquiries.

2



Table 1: Examples of models proposed in the literature that capture data dynamics with

probabilistic descriptions. Here, X represents the attribute, and Y represents the label.

Models Descriptions

Attribute noise [20, 21, 22, 23]

𝑃(X) is corrupted due to, e.g., additive attribute noise or missingness,

while the labels remain untouched

Random classification noise

[9, 24, 25]

Considering 𝑃(Y | X)𝑃(X), 𝑃(Y | X) is corrupted by flipping each label

independently with a constant probability, while 𝑃(X) remains invariant

Class-conditional noise

[11, 12, 26, 23]

Considering 𝑃(Y | X)𝑃(X), 𝑃(Y | X) is corrupted by flipping labels with

a probability dependent on the label, while 𝑃(X) remains invariant

Instance-dependent noise [27]

Considering 𝑃(Y | X)𝑃(X), 𝑃(Y | X) is corrupted by flipping labels with

a probability dependent on the instance, while 𝑃(X) remains invariant

Instance- & label-dependent

noise [27, 28, 29, 30]

Considering 𝑃(Y | X)𝑃(X), 𝑃(Y | X) is corrupted by flipping labels with

an instance- & label-dependent probability, while 𝑃(X) remains invariant

Mutually contaminated

distributions [31, 32, 33, 34]

Considering 𝑃(X | Y)𝑃(Y), 𝑃(X | Y) is corrupted by a mixture model, and

𝑃(Y) can also be corrupted

Combined simple noise [23]

Considering 𝑃(Y | X)𝑃(X), 𝑃(X) is corrupted by additive noise, and 𝑃(Y | X)
is corrupted by flipping labels with a probability dependent on the label

Target shift [35, 36, 37, 38] Considering 𝑃(X | Y)𝑃(Y), 𝑃(Y) is corrupted while 𝑃(X | Y) remains invariant

Covariate shift [13, 39, 40, 15] Considering 𝑃(Y | X)𝑃(X), 𝑃(X) is corrupted while 𝑃(Y | X) remains invariant

Generalized target shift

[10, 41, 42]

Considering 𝑃(X | Y)𝑃(Y), 𝑃(Y) and 𝑃(X | Y) are corrupted, subject to specific

invariance assumptions on conditional distributions in the latent space

Style transfer [43, 44, 45]

To model it probabilistically, we express it as 𝑃(X | Y) being changed given

the designated style

Adversarial noise

[46, 47, 48, 49, 50]

To model it probabilistically, we express it as 𝑃(X) being intentionally

corrupted by an adversary to alter the correct prediction for each instance

Concept drift [51, 52, 53] 𝑃(X,Y) changes over time

Concept shift [54, 55, 56] Considering 𝑃(Y | X)𝑃(X), 𝑃(Y | X) changes over time

Sampling shift [57, 55, 56] Considering 𝑃(Y | X)𝑃(X), 𝑃(X) changes over time, while 𝑃(Y | X) is invariant

Selection bias [14] 𝑃(X,Y) is corrupted to �̃�(X,Y) s.t. �̃� ≪ 𝑃, 𝛼 B 𝑑�̃�
𝑑𝑃

& | |𝛼 | |∞ < ∞

1.1 Motivations, approach, and contributions

We observed a continued surge of research papers dedicated to specific models of corruption,

predominantly relying on explanations of changes and invariance in specific probabilities. In

Tab. 1, we provide a non-comprehensive list of such models that can be conceptualized as

corruption in our sense. Rather than adding to this already diverse landscape, we propose a

taxonomy to systematically organize them. This taxonomy serves as a comprehensive map

of probabilistic corruption models, currently absent in the field. Our approach distinguishes

itself from the majority of papers in this line, which often propose new corruption models and

tailored mitigation algorithms. We, on the other hand, explore their mitigation without the

aim of introducing a new algorithm, but for gaining a deeper understanding of theory behind

the existing ones. Details about our contributions are summarized in the following.

Understanding corruptions and their types A common definition of corruption found in

the literature is the one of distributional shift. We shape our notion of Markovian corruption
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inspired by such concept and making use of Markov kernels. However, attributing failures in

learning solely to changes in probability distributions might be restrictive. For this reason we

broaden the concept of corruption to a general one that includes changes in model class and

loss function. Focusing on Markovian corruption, we establish a taxonomy grounded in its

dependence on the input and output spaces in § 3. This allows us to uncover commonalities

among different models of corruptions (refer to Tab. 2 for the correspondence of Tab. 1 in our

taxonomy), thus transcending the diverse bespoke terminologies used by different authors.

This methodology broadens our understanding of corruptions, shedding light on previously

overlooked instances in the literature, such as joint and dependent corruptions. Our resulting

framework is proven to be exhaustive for all possible pairwise probabilistic corruptions. While

progress has been notable, there are areas yet to be investigated. Arguments may be made for

non-probabilistic corruptions that change the probability associated with events in a manner

not adhering to probability principles. In this context, we analyze two popular corruption

models and demonstrate that they are non-Markovian; however, a comprehensive study of this

class of corruptions is left to future investigations.

An information-theoretic view on the consequences of corruption We further explore

the implications of different types of corruptions within our taxonomy on learning from an

information-theoretic view. The conventional method for comparing a clean and corrupted

experiment is through the measures of information, using the Data Processing Inequality,

which generally states that the amount of information can only decrease or stay constant as

a result of “information processing”. Recently, Williamson and Cranko [23] examined the

information-risk connection, established the relationship between measures of information and

the Bayes risk of a statistical decision problem, and yielded Information Processing Equalities.

These findings offer valuable insights into understanding how changes in information relate to

changes in Bayes risk. Therefore, we follow the spirit of the authors and connect the Bayes risk

of clean and corrupted supervised learning problems through equality results. Such equalities,

illustrated in § 4, effectively prove the equivalence between two learning problems: the former

corrupted in a Markovian fashion, the latter via general corruption changing model class and loss

function via a Markov kernel. A feature of this analysis is its neat avoidance of dependence on

specific algorithms, which provides an agnostic means of comparison for corruption types.

Such comparison is, in our results, qualitative, and lays the foundation for future quantitative

studies. One of our main findings amounts to understanding that for corruptions on 𝑌, only

the loss function is affected while the model class remains untouched by the corruption kernel;

however, for more intricate cases involving corruptions also on 𝑋, both the loss function and

the model class are influenced by the corresponding factorized corruption kernel.

A systematic analysis of mitigation for our corruption types Applying the Bayes Risk

results, we derive corruption-corrected loss functions for all the different corruption instances

within our framework (§ 5). We first identify the need of generalizing the concept of corrected

learning since it becomes outmoded when not only considering label corruptions. Within the

generalized corrected learning framework, we find a hierarchy-induced set of results on how

the optimization problem changes under various corruptions, and how to abstractly compute

their loss corrections in Theorems 20 and 21. We conclude that more complex corruptions are

more detrimental, and require more sophisticated designs than noise mitigation via classical

loss correction. In particular, we prove that in our setting classical loss correction is still

not enough for achieving full mitigation in a corruption setting that involves a attribute
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corruption, unveiling an additional fundamental difference between label corruption and

attribute corruption.

2 Technical Background

2.1 Markov kernels

We now introduce the mathematical machinery used for modeling corruption in learning

problems; that is, Markov kernels and some of their relevant properties. The material reported

here is drawn from [58, 59, 26, 60, 61]; the reader can refer to them for a comprehensive

understanding of kernels in probability and learning theory.

Definition 1 (Klenke [58]). Let (𝑋1 ,𝒳1) and (𝑋2 ,𝒳2) be standard Borel measure spaces, i.e.

Polish spaces with a Borel 𝜎-algebra. Let 𝜅 be a mapping from 𝑋1 × 𝒳2 into [0,+∞]. Then, 𝜅 is

called a kernel from (𝑋1 ,𝒳1) to (𝑋2 ,𝒳2) if

1. the mapping 𝑥1 → 𝜅(𝑥1 , 𝐵) is 𝒳1-measurable for every set 𝐵 ∈ 𝒳2, and

2. the mapping 𝐵 → 𝜅(𝑥1 , 𝐵) is a measure on (𝑋2 ,𝒳2) for every 𝑥1 ∈ 𝑋1.

A kernel is said to be a Markov kernel if 𝜅(𝑥1 , 𝑋2) = 1 ∀𝑥1 ∈ 𝑋1, i.e., it maps to a probability

measure; this is denoted by the compact notation 𝜅 : 𝑋1 ⇝ 𝑋2.
a

The set 𝑋1 is said to be the

domain of 𝜅, and 𝑋2 its image, i.e.,

𝐷(𝜅) = 𝑋1 , 𝐼(𝜅) = 𝑋2 .

We refer to the set of kernels as 𝒯 (𝑋1 , 𝑋2) and its subset of Markov kernels as ℳ(𝑋1 , 𝑋2).
a
This notation is borrowed from category theory, see [62] for a primer.

To better grasp the concept of Markov kernel, we can think of it as a parameterized family

𝜅𝑥1
(·) , 𝑥1 ∈ 𝑋1 of probability measures on the space (𝑋2 ,𝒳2). It can interpreted as an

observation channel, a concept rooted in information theory and properly formalized in [63].

In this context, a Markov kernel serves as a detailed probabilistic description of the generative

process leading from a “hidden value” 𝑋1 to observed distribution on 𝑋2.

Additionally, we can notice that Markov kernels clearly resemble conditional probabilities.1 As

such, for finite spaces they can we represented as stochastic matrices.

Special kinds of kernels, which will extensively used in our analysis, are:

• A Markov kernel defined on the trivial domain space, taking values of a probability

distribution 𝜈. This kernel will therefore be equivalent to the probability distribution.

We can formally write

𝜅𝜈 : {∗}⇝ 𝑋1 , 𝜅𝜈 ≡ 𝜈 , 𝜈 ∈ 𝒫(𝑋1) ,

with ({∗}, {{∗}, ∅}) a measurable space with only one element. In the text, we will simplify

the notation by directly using 𝜈 instead of 𝜅𝜈;

• A Dirac delta kernel, i.e., an identity kernel, defined as 𝛿𝑋1
: 𝑋1⇝ 𝑋1, such that for all

𝐴 ∈ 𝒳1, we have 𝛿𝑋1
(𝑥, 𝐴) = 1 if 𝑥 ∈ 𝑋1, 𝛿𝑋1

(𝑥, 𝐴) = 0 otherwise.

1In fact, they are proved to be regular conditional probabilities, see Çinlar [59] for more details.

5



Kernel actions A Markov kernel naturally induces two useful functionals, one on distributions

and one on functions. They are defined as:

· 𝜅 : 𝒫(𝑋1) → 𝒫(𝑋2) 𝜇𝜅(𝐵) B
∫
𝑋1

𝜇(𝑑𝑥1)𝜅(𝑥1 , 𝐵) ∀𝐵 ∈ 𝒳2 ,

𝜅 · : 𝐿0(𝑋2 ,R) → 𝐿0(𝑋1 ,R) 𝜅 𝑓 (𝑥1) B
∫
𝑋2

𝜅(𝑥1 , 𝑑𝑥2) 𝑓 (𝑥2) ∀𝑥1 ∈ 𝑋1 ,

provided the integral exists and assuming that 𝒫(𝑋) refers to the set of probabilities on a

set 𝑋. We refer to these operators as the actions of kernels on distributions and functions,

respectively.

Equipped with these new operators, Markov kernels can now be seen as a point-wise prob-

abilistic description of the distortion process applied to a probability distribution 𝜇 on 𝑋1,

transforming it into another observed distribution on 𝑋2; equivalently, we can make a similar

comment for functions 𝑓 of 𝑋2. Again, Markov kernels are nothing else than observation

channels.

Kernel operations Kernels can be combined through different operations. We introduce

them here briefly, mainly inspired by [60, 61], covering all the necessary properties for this

work. We will use henceforth the notation (𝑋𝑖 ,𝒳𝑖) for a measurable space, presuming the

existence of some fixed, suitable 𝜎-algebras 𝒳𝑖 for 𝑋𝑖 . We remark that specifying the kernel

action operator 𝜅 𝑓 for all measurable 𝑓 effectively defines a kernel as 𝜅(𝑥1 , 𝐵) B 𝜅𝜒𝐵(𝑥1) [59,

Remark 6.4], where 𝜒𝐵(𝑥1) is the indicator function for 𝑥1 ∈ 𝑋1 , 𝐵 ∈ 𝒳2.

The first set of operations defined here can be referred to as in-series operations, given that the

involved kernels are required to satisfy specific conditions on the spaces for which they are

defined. These operations impose a more stringent set of feasibility conditions.

P 1 Given 𝜅 : 𝑋1 ⇝ 𝑋2 and 𝜆 : 𝑋2 ⇝ 𝑋3, their chain composition is a kernel

𝜅 ◦ 𝜆 : 𝑋1⇝ 𝑋3 uniquely determined by the following kernel action:

(𝜅 ◦ 𝜆) 𝑓 (𝑥1) B
∫
𝑋2

𝜅(𝑥1 , 𝑑𝑥2)
∫
𝑋3

𝜆(𝑥2 , 𝑑𝑥3) 𝑓 (𝑥3) ,

where 𝑓 : 𝑋3 → R is a positive 𝒳3-measurable function.

P2 Given 𝜅 : 𝑋1 ⇝ 𝑋2 and 𝜆 : 𝑋1 × 𝑋2 ⇝ 𝑋3, their product composition is a kernel

𝜅 × 𝜆 : 𝑋1⇝ 𝑋2 × 𝑋3 uniquely determined by the following kernel action:

(𝜅 × 𝜆) 𝑓 (𝑥1) B
∫
𝑋2

𝜅(𝑥1 , 𝑑𝑥2)
∫
𝑋3

𝜆((𝑥1 , 𝑥2), 𝑑𝑥3) 𝑓 (𝑥2 , 𝑥3) ,

for every 𝑓 positive 𝒳2 × 𝒳3-measurable.

We underline that a probability distribution is a specific instance of a Markov kernel, constant

on its parameter space. Therefore, P1 and P2 are well defined for 𝜅 : {∗}⇝ 𝑋2 ≡𝑥1∈𝑋1
𝜈, 𝜈 on

(𝑋2 ,𝒳2) and 𝜆 : 𝑋2 ⇝ 𝑋3 for the former, 𝜆 : {∗} × 𝑋2 ⇝ 𝑋3 for the latter. This allows us to

write distribution-kernel combinations with the same notation used for the kernel-kernel ones,
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i.e. as 𝜈 ◦ 𝜆 and 𝜈 × 𝜆.2 Both the aforementioned operations are ways to generate new probability

measures:

• 𝜈 ◦ 𝜆 is equivalent to the kernel action on probabilities, 𝜆𝜈, so we adopt the ◦ notation for

it from now on;

• 𝜈 × 𝜆 is the kernel version of the Bayes decomposition of a joint probability into marginal

𝜈 and conditional probability 𝜆.

The second set of operations defined here can be referred to as parallel operations. Compared

to in-series operations as in P1 and P2, it allows for more flexible combinations of kernels.

P3 Given 𝜅 : 𝑋1⇝ 𝑋2 and𝜆 : 𝑋3⇝ 𝑋4, their superposition is a kernel 𝜅⊗𝜆 : 𝑋1×𝑋3⇝
𝑋2 × 𝑋4 uniquely determined by the following kernel action:

(𝜅 ⊗ 𝜆) 𝑓 (𝑥1 , 𝑥3) B
∫
𝑋2

𝜅(𝑥1 , 𝑑𝑥2)
∫
𝑋4

𝜆(𝑥3 , 𝑑𝑥4) 𝑓 (𝑥2 , 𝑥4) ,

where 𝑓 : 𝑋2 × 𝑋4 → R is positive 𝒳2 × 𝒳4-measurable.

Observe that no restriction is imposed on the parameter spaces to be equal, e.g., 𝑋1 = 𝑋3, or

Cartesian products with some space in common, e.g., 𝑋1 = 𝑌1 × 𝑌2 , 𝑋3 = 𝑌1 × 𝑌3 . When this

happens, the actions of the two kernels “superpose” on the same space. However, in case we

have more than one measure acting on the same space, the superposition integral would be

ill-defined, making some combinations unfeasible. Because of these properties, we say that P3

is the operation with the weakest feasibility conditions, the set of rules to fulfill for a well-defined

operation.

The last set of operations, introduced by us, can be described as a mid-way between the chain

composition P1 and the superposition P3.

P4 Given 𝜅 : 𝑋1 × 𝑋2⇝ 𝑋3 and 𝜆 : 𝑋1 × 𝑋3⇝ 𝑋4, their partial chain composition is a

kernel 𝜅 ◦𝑋3
𝜆 : 𝑋1 × 𝑋2⇝ 𝑋4 uniquely determined by the following kernel action:

(𝜅 ◦𝑋3
𝜆) 𝑓 (𝑥1 , 𝑥2) B

∫
𝑋3

𝜅((𝑥1 , 𝑥2), 𝑑𝑥3)
∫
𝑋4

𝜆((𝑥1 , 𝑥3), 𝑑𝑥4) 𝑓 (𝑥4) ,

where 𝑓 : 𝑋4 → R is a positive 𝒳4-measurable function.

Essentially, this operation only chains the kernels on the specified space, here 𝑋3, while

superposing them on the common parameter, 𝑋1.

2.2 Statistical experiments and supervised learning

After establishing the notation for working with kernels, we are now ready to deploy the

framework in the learning context. The content presented here is connected to the literature on

statistical experiments and decision theory [64, 65]. We summarize the key concepts crucial to our

analysis and direct readers to relevant books for a more comprehensive perspective.

2True up to a “projection” on the right type, since e.g. 𝜈 ◦ 𝜆 ∈ ℳ({∗}, 𝑋
3
) while 𝜆𝜈 ∈ 𝒫(𝑋

3
). However, we prefer

not to delve into this level of detail and keep the following presentation simpler.
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The general learning problem In statistical decision theory, a general decision problem can

be viewed as a two-player game between nature and decision-maker. Here, nature represents an

unknown process that generates the observed phenomena; the decision-maker observes the

said phenomena and seeks to find the optimal action for each observation within the context of

a given task. Slightly more formally, nature here stands for the (stochastic) force choosing an

observation 𝑜 ∈ 𝑂 given some hidden state 𝜃 ∈ Θ. The stochastic process generating 𝑜 given 𝜃 is

referred to as the experiment 𝐸.

Definition 2. An experiment 𝐸 : Θ⇝ 𝑂 is a Markov kernel from the hidden state space to the

observation space of a given decision problem.

The parameter space Θ and the observation space 𝑂 are fixed by the setting of the decision

problem. We need to specify an additional set, the decision space𝐴, to introduce the modeling of

the decision-maker.3 Having observed the phenomena, the decision-maker aims to construct a

decision rule𝐷mapping from the observation space𝑂 to the action space𝐴. The decision-making

task can be represented by the transition diagram Θ 𝑂 𝐴,
𝐸

𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡

𝐷

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑢𝑙𝑒
where

the decision rule is also modeled by a Markov kernel, hence is interpreted as a stochastic rule

fixing a probability on the action space 𝐴 instead of the classical deterministic view. In order

to evaluate the performance of the decision maker with respect the optimal decision, one

introduces the concept of loss function and therefore of learning problem.

Definition 3. A general learning problem ℒ is defined as the triple ℒ = (ℓ ,ℋ , 𝑃), where

ℓ : 𝒫(𝐴) × 𝐴→ R is a loss function in 𝐿0(𝒫(𝐴) × 𝐴,R), ℋ ⊆ ℳ(𝑂, 𝐴) is a decision class, or

model class, and 𝑃 B 𝜋𝜃 × 𝐸, 𝜋𝜃 ∈ 𝒫(Θ) is the joint probability distribution generating data.

We say that a problem ℒ is defined on a measurable space (Θ × 𝑂 × 𝐴,Ω × 𝒪 ×𝒜).

Supervised learning through risk minimization In the specific setup of supervised learning,

the observation space 𝑂 is the attribute space 𝑋 ⊂ R𝑑 , 𝑑 ≥ 1, while both states Θ and actions

𝐴 correspond to the label space 𝑌. Then, the experiment 𝐸 leads to a probability associated

with the attribute 𝑋, given the state 𝑌, so 𝐸 : 𝑌⇝ 𝑋. Here we focus on the classification task,

that assumes the label space to be finite,4 while no constraint is imposed on 𝑋 apart from being

a compact subset of R𝑑.

Definition 4. A supervised learning problem is a general learning problem ℒ = (ℓ ,ℋ , 𝑃) in

which the data amount to couples of labels 𝑌 and attributes 𝑋, i.e., 𝑃 B 𝜋𝑌 × 𝐸 ∈ 𝒫(𝑍), 𝑍 B
𝑋×𝑌. Consequently, ℓ ∈ 𝐿0(𝑃(𝑌)×𝑌,R≥0), ℋ ⊆ ℳ(𝑋,𝑌), and the corresponding measurable

space is (𝑋 × 𝑌,𝒳 ×𝒴).

The definition above fits in the general decision problem framework by considering the specific

diagram 𝑌 𝑋 𝑌,
𝐸 ℎ

where ℎ is a decision rule chosen in ℳ(𝑋,𝑌), therefore choosing a

probability on 𝑌 associated to a point in 𝑋.5 Its task can be formalized as a risk minimization

3For the ease of measure-theoretic complexity, assume all relevant spaces are measurable.

4All the stated results can be easily extended to regression cases by considering a continuous label space; we

leave it for future application.

5This is, considering the hypothesis, or decision, as stochastic. Several techniques exist to transform a stochastic
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problem, i.e., finding the optimal action ℎ ∈ ℳ(𝑋,𝑌) by considering the Bayes Risk (br)

measure

brℓ (𝜋𝑌 × 𝐸) B inf

ℎ∈ℳ(𝑋,𝑌)
rℓ ,ℎ(𝜋𝑌 × 𝐸) ; rℓ ,ℎ(𝜋𝑌 × 𝐸) B EY∼𝜋𝑌EX∼𝐸Yℓ (ℎX ,Y) ,

where 𝜋𝑌 is a prior distribution on 𝑌, r indicates the risk, and the notation 𝜅X stands for

the kernel 𝜅 evaluated on the parameter X, e.g., ℎX , 𝐸Y (this subscript notation will be used

throughout).6 Since in applications, one deploys a model with only limited representation

capacity, we consider the constrained version of br

brℓ ,ℋ (𝜋𝑌 × 𝐸) = inf

ℎ∈ℋ⊆ℳ(𝑋,𝑌)
EY∼𝜋𝑌EX∼𝐸Yℓ (ℎX ,Y) ,

differing from the standard br by being constrained to the minimization set ℋ . For this case

to be well-specified, we need to enforce the condition of at least one of the minima of the

unconstrained br to be included in ℋ . For our convenience, we ask the minima considered to

be the ℎ matching the 𝐹, the true posterior.

For some cases, the formulation of learning problem in terms of the experiment can be

restrictive; for this reason, we introduce an alternative way of writing ℒ starting from the

posterior kernel 𝐹 : 𝑋 ⇝ 𝑌. This can be naturally justified by considering the following simple

proposition.

Proposition 5. A supervised learning problem ℒ = (ℓ ,ℋ , 𝑃 = 𝜋𝑌 × 𝐸) on the measurable

space (𝑋 × 𝑌,𝒳 ×𝒴) can be equivalently expressed

1. using the posterior kernel, i.e., as 𝑃 = 𝜋𝑋 × 𝐹 for some prior 𝜋𝑋 ∈ 𝒫(𝑋) on the attribute

space. We will then refer to it as ℒ = (ℓ ,ℋ , 𝑃 = 𝜋𝑋 × 𝐹) on the measurable space

(𝑋 × 𝑌,𝒳 ×𝒴);
2. using the joint distribution 𝑃, agnostic regarding its factorization. We will then refer to it

as ℒ = (ℓ ,ℋ , 𝑃) on the measurable space (𝑍,𝒵).
We refer to an ℒ = (ℓ ,ℋ , 𝑃 = 𝜋𝑌 × 𝐸) as generative, while an ℒ = (ℓ ,ℋ , 𝑃 = 𝜋𝑋 × 𝐹) as

discriminative.

Since our focus in the following will exclusively be on supervised learning problems, we will

simply term them learning problems.

3 A Taxonomy of Corruptions in Supervised Learning

In this section, we formally define our conceptualization of corruption within the context of

a learning problem, utilizing the mathematical tool of Markov kernels. Given the diverse

forms corruptions can take, we categorize them through a novel taxonomy based on its input

and output spaces–essentially classifying them by type. We demonstrate the exhaustiveness

of this general framework, which facilitates the systematic study of the various corruption

types and combinations. Finally, through a cautious examination, we analyze the relationships

between our taxonomy of corruption and existing corruption models, elucidating novel insights

generated by our framework.

decision rule into a labeling function, or deterministic one, that assigns a point in 𝑋 to a label in 𝑌. For instance, in

the binary case one can fix a thresholding parameter.

6We underline that the difference between the plain kernel and the subscript kernel, e.g. 𝐸 and 𝐸X, is caused by

the evaluation of a kernel on a random variable, which effectively transforms it into a random variable itself.
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3.1 Corruption definition and types

A learning problem comprises three key components: the loss function ℓ , the model class

ℋ , and the probability distribution 𝑃 from which we draw the data. In the field of machine

learning, considerable attention has been devoted by engineers and researchers to the task of

designing suitable loss functions or model architectures; however, less effort has been put into

data, given that they are often not responsible for collecting them but rather for processing

them [66].

In contrast to the traditional concept of corruption in machine learning, which only focuses on

data generation and is defined as distribution shift–an alteration of the probability distribution

to deviate from its original test counterpart–we argue that corruption can occur in any of the

components. In this broader sense, opting for surrogate losses can be regarded as a form of

corruption to the original loss function. For instance, surrogate losses are often chosen in

place of the 0-1 loss in the classification problems [67]. Moreover, a misspecified model, such as

when the model class of choice, e.g., linear functions, does not include the true model, e.g.,

a quadratic function, can also be considered a form of corruption. Therefore we define the

general corruption as any alterations in (ℓ ,ℋ , 𝑃) as follows.

Definition 6. A general corruption is a mapping sending a learning problem ℒ = (ℓ ,ℋ , 𝑃)
into another learning problem ℒ̃ = (ℓ̃ , ℋ̃ , �̃�), where both ℒ , ℒ̃ are defined on a measurable space

(𝑍,𝒵).

To initiate a comprehensive taxonomy of corruption, we begin by examining a specific case

where corruption is defined as a Markov kernel with fixed input and output probability spaces.7

This definition subsumes a significant portion of existing literature, including classical works

on distribution shift and noisy data. As such, our attention now turns to this subcase, formally

defined below, with the aim of establishing connections between our types of corruption and

the diverse corruption models laid out in previous studies. This, in turn, suggests that future

work must extend beyond this subcase, as we have identified certain examples that are not

covered by this definition (see § 3.2).

Definition 7. A Markovian corruption maps ℒ = (ℓ ,ℋ , 𝑃) defined on (𝑍,𝒵) to another

learning problem ℒ̃ on (𝑍,𝒵) through the action of a Markov kernel 𝜅 : 𝑍 ⇝ 𝑍, such that

ℒ̃ = (ℓ ,ℋ , �̃� = 𝑃 ◦ 𝜅).

We remark that the definition above does not necessarily assume the Markov kernel 𝜏 to be

known. We only require 𝜏 to exist, and for us to know the values assumed by the kernel action

when evaluated on 𝑃, i.e. �̃� = 𝑃 ◦ 𝜅. The kernel is therefore not uniquely identified by the

corruption definition, since multiple Markov kernels can generate �̃� from 𝑃. However, for the

analysis carried on in the rest of the paper, we assume 𝜅 to be known.

The rationale behind this choice for modeling corruption lies in viewing a Markov kernel,

or observation channel in the context of information theory, as a point-wise description of the

stochastic process that leads to an observed probability distribution. This process is determined

by external conditions that, in some sense, limit our ability of “seeing” the truth (probabilistic

7While Markov kernels have been utilized in formalizing corruption [26, 23], their primary foci were solely on

label corruption, attribute corruption, or simple joint corruption.
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𝜅 ∈ ℳ(𝑋 × 𝑌, 𝑋 × 𝑌)
joint

𝜅 ∈ ℳ(𝑋 × 𝑌,𝑌)
2-dependent

𝜅 ∈ ℳ(𝑋,𝑌)
1-dependent

𝜅 ∈ ℳ(𝑌,𝑌)
simple

𝜅 ∈ ℳ(𝑌, 𝑋 × 𝑌)
1-param. joint

𝜅 ∈ ℳ(𝑋, 𝑋 × 𝑌)
1-param. joint

𝜅 ∈ ℳ(𝑋 × 𝑌, 𝑋)
2-dependent

𝜅 ∈ ℳ(𝑌, 𝑋)
1-dependent

𝜅 ∈ ℳ(𝑋, 𝑋)
simple

Figure 1: Hierarchy of partial corruption types. The partial corruption types are hierarchically

organized based on their dependence on the instance 𝑋 and label 𝑌 space, as depicted through

a tree structure. At the root of the tree lies the most general form of corruption, where the

domain and image spaces are the joint one 𝑋 ×𝑌, i.e., 𝐷(𝜅) = 𝐼(𝜅) = 𝑋 ×𝑌. The arrows signify

that a child node has its domain or image constant w.r.t. exactly one of the variables in its

parent. Therefore, the children nodes can be expressed as subcases of their parent, but the

parents generally cannot be expressed by only one of their children. The partial corruption

types that cannot be combined with others are shown in dotted boxes. Note that corner cases

involving independence from all variables or identity kernels are excluded from this analysis.

world), consequently giving rise to corruptions (distorted data distribution). Given the

probabilistic focus of this work, we will from now on refer to Markovian corruption simply as

corruption. For formal statements, we abuse the kernel notation and refer to the corruption

induced by a kernel as the kernel itself, i.e., 𝜅 : 𝑍⇝ 𝑍, or equivalently 𝜅 ∈ ℳ(𝑍, 𝑍).

A new taxonomy of partial corruptions Corruptions can be classified in different ways based

on the domain and image of their associated kernels. Starting from the most general corruption,

i.e., the corruption on 𝑋 × 𝑌 space induced by 𝜅 : 𝑋 × 𝑌⇝ 𝑋 × 𝑌, when one space (either 𝑋

or 𝑌 space) is absent in the image or domain of the corruption kernel, we will refer to them

as partial corruptions. In Fig. 1, we present all possible types of partial corruption, with the

exception of those that are identities (Dirac delta kernels) or constantly equal to a probability

(𝐷(𝜅) = {∗}), as they can be seen as obvious subcases of other partial corruptions. We classify

them based on their signature type, that is, which sets of 𝑋 and 𝑌 constitute the domain and

image of the corruption kernel. Specifically, we employ the following nomenclature: joint
corruption when 𝐷(𝜅) = 𝐼(𝜅) = 𝑋 × 𝑌; 1-parameter joint corruption when 𝐷(𝜅) = 𝑋 × 𝑌 and

𝐼(𝜅) is either 𝑋 or 𝑌; simple corruption when 𝐷(𝜅) = 𝐼(𝜅) ≠ 𝑋 × 𝑌, so when they are either

equal to 𝑋 or 𝑌; 2-dependent when 𝐷(𝜅) = 𝑋 × 𝑌 and 𝐼(𝜅) is either 𝑋 or 𝑌; 1-dependent when

𝐷(𝜅) = 𝑋 and 𝐼(𝜅) = 𝑌 or the opposite.

Constructing joint corruption as a combination of partial ones We now aim to enumerate

all possible ways of constructing joint corruptions, i.e., of the type 𝜅 : 𝑋 × 𝑌 ⇝ 𝑋 × 𝑌, by

combining the nodes in Fig. 1 through the superposition operation P3. To this end, we introduce

an additional condition to be imposed on the combinations of partial corruptions.

Definition 8. A pairwise corruption is a joint corruption 𝜅 generated by superposition of two

partial corruptions, 𝜏 ⊗ 𝜆, such that none of the involved partial corruptions can be decomposed

further as a combination of Markov kernel via the P1–3 operations.
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𝜏 : 𝑋 × 𝑌⇝ 𝑋

⊗
𝜆 : 𝑋 × 𝑌⇝ 𝑌

𝜏 : 𝑌⇝ 𝑋

⊗
𝜆 : 𝑋 × 𝑌⇝ 𝑌

𝜏 : 𝑋 × 𝑌⇝ 𝑋

⊗
𝜆 : 𝑋 ⇝ 𝑌

𝜏 : 𝑋 ⇝ 𝑋

⊗
𝜆 : 𝑋 × 𝑌⇝ 𝑌

𝜏 : 𝑋 × 𝑌⇝ 𝑋

⊗
𝜆 : 𝑌⇝ 𝑌

𝜏 : 𝑌⇝ 𝑋

⊗
𝜆 : 𝑋 ⇝ 𝑌

𝜏 : 𝑋 ⇝ 𝑋

⊗
𝜆 : 𝑌⇝ 𝑌

Figure 2: Feasible combinations of partial corruptions. Joint corruptions, i.e. of type 𝜅 : 𝑋 × 𝑌⇝
𝑋 × 𝑌, are obtained by combining two compatible partial corruptions in Fig. 1. The tree

structure is induced by that of the partial corruption types. Notice that we can only combine

a partial corruption with 𝐼(𝜏) = 𝑋 with another such that 𝐼(𝜆) = 𝑌, following Proposition 9.

Therefore, the arrows signify that both 𝜏 and 𝜆 in a child node inherit their domains from the

parent node with either 𝜏 or 𝜆 constant w.r.t. exactly one of their domain variables.

Effectively, we are forbidding the use of additional “hidden” spaces beyond the specified

domain and image so to ensure that our proposed taxonomy of combined partial corruptions

(or, joint factorized corruptions) is complete.

The requirements introduced until now shape the objects that we will use throughout the

paper to study corruption. We summarize them in the following assumption.

A0 Joint corruptions are required to be Markovian and act on probability distributions

as per Def. 7, and to satisfy the pairwise corruption condition.

According to Def. 7, we must map a joint probability distribution on 𝑋 × 𝑌 into another

joint one. Therefore, we exclude the combination of a simple corruption with a 1-dependent

corruption since such a pairing cannot generate a joint corruption.8 Additionally, combinations

such as (𝜏 ⊗ 𝜆)(𝑥, 𝑑�̃�𝑑�̃�) = 𝜏(𝑥, 𝑑�̃�𝑑�̃�) ⊗ 𝜆(𝑥, 𝑑�̃�) are not allowed because, according to P3, the

measure on the corrupted labels would be ill-defined. Therefore, enumerating all the possible

combinations and checking which are feasible, we can see that only the ones with 𝐼(𝜏) = 𝑋

and 𝐼(𝜆) = 𝑌 or 𝐼(𝜏) = 𝑌 and 𝐼(𝜆) = 𝑋 respect the condition. Therefore we have informally

shown the following proposition to hold, granted requiring without loss of generality 𝜏 to be

an attribute corruption, and 𝜆 a label corruption.

Proposition 9. The set of feasible joint factorized corruptions of the form 𝜅 = 𝜏 ⊗ 𝜆 respecting

A0, and such that 𝜏’s and 𝜆’s types are within the ones listed in Fig. 1 only contains kernels 𝜅
such that 𝐼(𝜏) = 𝑋 and 𝐼(𝜆) = 𝑌.

Such set is depicted and hierarchically organized in Fig. 2. The proposition formalizes a

desirable property of corruption, allowing it to change the distribution on attribute X and the

8Note that such combination is feasible if the 1-parameter joint corruption is seen as a subcase of a joint one, e.g.,

𝜆(𝑥, 𝑑�̃�𝑑�̃�) 1(𝑦), where 1(𝑦) only trivially depends on 𝑦 since it is the matrix with all entries equal to 1. Similarly,

a 1-dependent corruption can be seen as a subcase of a 2-dependent one. The constraints we mention are only

dimensional.
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distribution on label Y in a distinguishable way, either independently or dependently. Therefore,

corruptions with indistinguishable effects on label and attributes, such as 1-parameter joint ones,

are incorporated in the class of joint and non-factorizable corruption, i.e. ℳ(𝑋×𝑌, 𝑋×𝑌).

Exhaustiveness of the taxonomy We say that the taxonomy of Markovian corruption proposed

is exhaustive if, for every possible couple of distributions (𝑃, �̃�) ∈ 𝒫(𝑍) × 𝒫(𝑍), there exist

a pairwise Markovian corruption from ℒ = (ℓ ,ℋ , 𝑃) to ℒ̃ = (ℓ ,ℋ , �̃�) s.t. �̃� = 𝑃 ◦ 𝜅. The

formal argument for proving exhaustiveness is based on the concept of coupling of probability

spaces. A coupling is formally defined for two probability spaces (𝑍1 ,𝒵1 , 𝑃1), (𝑍2 ,𝒵2 , 𝑃2) as a

probability space (𝑍1 × 𝑍2 ,𝒵1 ×𝒵2 , 𝑃), such that the marginal probabilities associated to 𝑃

w.r.t. 𝑍𝑖 , 𝑖 ∈ {1, 2}, are the respective 𝑃𝑖 . By construction, Markov kernels with fixed input

and output probabilities 𝑃, �̃� are in bĳection with all the possible couplings existent on 𝑍 × 𝑍
with two fixed probability measures; for us, 𝑃, �̃� (see details in § S3). Hence, they represent all

possible pairwise probabilistic dependencies between probability spaces, i.e., induced by a

Markov kernel. Thanks to the reasoning above and what we proved in the previous paragraph,

we can state the following:

Proposition 10. The taxonomy of factorized joint corruptions illustrated in Fig. 2 is exhaustive.

In the context of most machine learning research on corruption, the corruption process

typically involves two environments, namely, the training one and the test one. Our definition

of corruption (A0) covers all such pairwise cases. Furthermore, one may also apply this

framework to settings with more than two spaces, e.g., learning from multiple domains [68], or

concept drift across different time steps [51, 52, 53], by relaxing our assumptions. For these

cases, we can employ a composed model, where different corruptions are acting together in a

“sequential” (P1-P2) or “parallel” (P3) fashion and creating more complex patterns. We discuss

further possibilities for applying this framework to 𝑛 > 2 corrupted spaces in § S4.

A practical example Here, we present an illustration of a Markov kernel (in the finite

case) within a practical scenario to facilitate for the reader the understanding of corruption

through kernels. The provided example is adapted from [69] which considers the prediction of

recidivism in the criminal justice system–predict who goes on to commit future crimes.

Surveys have shown that “in the case of drug crimes, whites are at least as likely as blacks to sell

or use drugs; yet blacks are more than twice as likely to be arrested for drug-related offenses”

[70]. Given this, we consider the observed outcome “rearrest”, denoted as Ỹ ∈ 𝑌 := {+1,−1}, as

a corrupted version of the true outcome “reoffense”, denoted as Y ∈ 𝑌 := {+1,−1}, depending

on the attribute X ∈ 𝑋 = {𝑏, 𝑤}. Specifically, the disparity between Y and Ỹ can be captured by

a higher probability of flipping the reoffense label (Y = +1) to the no rearrest label (Ỹ = −1) for

white population (X = 𝑤) compared to the black population (X = 𝑏):

𝛼(𝑤) > 𝛼(𝑏), where 𝛼(𝑥) := 𝑃(Ỹ = −1 | Y = +1,X = 𝑥).

Moreover, we employ another reasonable assumption that the corruption arises solely from the

hidden recidivists, and not from erroneous arrests of individuals not committing the offense.

In other words, the probability of flipping the no reoffense label (Y = −1) to the rearrest label

(Ỹ = +1) is zero for both the black and white populations:

𝛽(𝑤) = 𝛽(𝑏) = 0, where 𝛽(𝑥) := 𝑃(Ỹ = +1 | Y = −1,X = 𝑥).
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A possible Markov kernel modeling the setting would be therefore of the type 𝜆 : 𝑋 × 𝑌⇝ 𝑌,

exemplifying 2-dependent label corruption. More specifically, it can be written as a joint kernel

𝛿𝑋 ⊗ 𝜆 where 𝜆 : 𝑋 × 𝑌⇝ 𝑌. Being defined in discrete probability spaces, both 𝛿𝑋 and 𝜆 can

be expressed as matrices with entries representing conditional probabilities. In particular, we

rewrite for clarity 𝜆 as its parameterized version 𝜆X
��
X=𝑥 : 𝑌⇝ 𝑌 for 𝑥 ∈ 𝑋, obtaining:

𝛿𝑋 B

[
𝑃(X̃ = 𝑏 | X = 𝑏) 𝑃(X̃ = 𝑏 | X = 𝑤)
𝑃(X̃ = 𝑤 | X = 𝑏) 𝑃(X̃ = 𝑤 | X = 𝑤)

]
=

[
1 0

0 1

]
,

𝜆X
��
X=𝑥 B

[
𝑃(Ỹ = 1 | Y = +1,X = 𝑥) 0

𝑃(Ỹ = −1 | Y = +1,X = 𝑥) 1

]
=

[
1 − 𝛼(𝑥) 0

𝛼(𝑥) 1

]
,

where the entries are determined according to the given problem setting. To illustrate, consider

an example of 𝛼(𝑏) = 1/10 and 𝛼(𝑤) = 1/5, yielding the following expressions:

𝜆X
��
X=𝑏 =

[
1 − 𝛼(𝑏) 0

𝛼(𝑏) 1

]
=

[
9/10 0

1/10 1

]
and𝜆X

��
X=𝑤 =

[
1 − 𝛼(𝑤) 0

𝛼(𝑤) 1

]
=

[
4/5 0

1/5 1

]
.

From Def. 7 we know that a Markovian corruption makes sense when specifying a learning

problem. Therefore, we additionally consider two different joint probabilities on 𝑋 × 𝑌:

𝑃1 = [1/4, 1/4, 1/4, 1/4]⊤ , 𝑃2 = [3/10, 2/10, 1/4, 1/4]⊤ ,

where the specific order is assumed to be

𝑃𝑖 B [𝑃𝑖(X = 𝑏,Y = +1), 𝑃𝑖(X = 𝑏,Y = −1), 𝑃𝑖(X = 𝑤,Y = +1), 𝑃𝑖(X = 𝑤,Y = −1) ]⊤ .

Note that in finite spaces, the superposition operation P3 reduces to the Kronecker product,

hence we write the joint corruption kernel 𝛿𝑋 ⊗ (𝜆 : 𝑋 × 𝑌⇝ 𝑋 × 𝑌) as

𝛿𝑋 ⊗ 𝜆 =


1 · 𝜆X

��
X=𝑏 0 · 𝜆X

��
X=𝑤

0 · 𝜆X
��
X=𝑏 1 · 𝜆X

��
X=𝑤


=


𝜆X

��
X=𝑏 0

0 𝜆X
��
X=𝑤


=


9/10 0 0 0

1/10 1 0 0

0 0 4/5 0

0 0 1/5 1

 ,
which is a 4 × 4 block diagonal matrix. Then we can obtain the corrupted joint probabilities by

composing them with the two original probabilities in the following manner:

𝑃1 ◦ (𝛿𝑋 ⊗ 𝜆) =


9/10 0 0 0

1/10 1 0 0

0 0 4/5 0

0 0 1/5 1



1/4

1/4

1/4

1/4

 ∝

45

55

40

60

 ,
𝑃2 ◦ (𝛿𝑋 ⊗ 𝜆) =


9/10 0 0 0

1/10 1 0 0

0 0 4/5 0

0 0 1/5 1



3/10

2/10

1/4

1/4

 ∝

54

46

40

60

 .
In this case, the chain composition operation P1 is reduced to matrix multiplication, and both

results are computed through rescaling of a 1/200 factor.
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Table 2: Illustration of the taxonomy with examples of existing corruption models. When only

one kernel is indicated, missing variables remain unchanged. “dep.” is short for “dependent”.

Corruption name in literature Corruption type Kernel representation

Attribute noise [20, 21, 22, 23] simple 𝜏 : 𝑋 ⇝ 𝑋

Style transfer [43, 44, 45] 1-dep. 𝜏 : 𝑌⇝ 𝑋

Adversarial noise [46, 47, 48, 49, 50] 2-dep. 𝜏 : 𝑋 × 𝑌⇝ 𝑋

Random classification noise [9, 24, 25] simple 𝜆 : {∗}⇝ 𝑌

Class-conditional noise [11, 12, 26, 23] simple 𝜆 : 𝑌⇝ 𝑌

Instance-dependent noise [27] 1-dep. 𝜆 : 𝑋 ⇝ 𝑌

Instance- & label-dependent noise

[27, 28, 29, 30]

2-dep. 𝜆 : 𝑋 × 𝑌⇝ 𝑌

Combined simple noise [23] two simple combined (𝜏 : 𝑋 ⇝ 𝑋) ⊗ (𝜆 : 𝑌⇝ 𝑌)
Generalized target shift [10, 41, 42] two 2-dep. combined (𝜏 : 𝑋 × 𝑌⇝ 𝑋) ⊗ (𝜆 : 𝑋 × 𝑌⇝ 𝑌)

Target shift [35, 36, 37, 38]

min. simple,

max. 1-dep. & 2-dep. combined

𝜆 : 𝑌⇝ 𝑌,

(𝜏 : 𝑌⇝ 𝑋) ⊗ (𝜆 : 𝑋 × 𝑌⇝ 𝑌)

Concept shift [54, 55, 56]

min. simple,

max. two 2-dep. combined

𝜆 : 𝑌⇝ 𝑌,

(𝜏 : 𝑋 × 𝑌⇝ 𝑋) ⊗ (𝜆 : 𝑋 × 𝑌⇝ 𝑌)
Covariate shift [13, 39, 40, 15]

Sampling shift [57, 55, 56]

min. simple,

max. 2-dep. & 1-dep. combined

𝜏 : 𝑋 ⇝ 𝑋,

(𝜏 : 𝑋 × 𝑌⇝ 𝑋) ⊗ (𝜆 : 𝑋 ⇝ 𝑌)

Concept drift [51, 52, 53]

can be any type, including

the non-factorized one

-

Mutually contaminated distributions

[31, 32, 33, 34]

Selection bias [14]

non-Markovian corruption -

Besides illustrating how Markovian corruptions technically act on probabilities, the example

above clarifies that solely encoding assumptions on the corruption process in the Markov kernel

might lead to incorrect conclusions. We exhibit two learning problem with different clean

probability distributions that are mapped into corrupted probabilities with similar values. This

underscores the importance of distinguishing between a Markov kernel, as defined in Def. 1,

and Markovian corruption associated with a learning problem ℒ, as defined in Def. 7.

As a proof of concept, we have only compared the original and corrupted probability distri-

butions, without consideration of the learning aspect–finding the optimal decision w.r.t. the

Bayes risk measure. In the upcoming § 4, we present a systematic analysis of the consequences

of different corruptions on a supervised learning problem by examining how their Bayes risk

is changed, accompanied by discussions on strategies for mitigating these consequences in

§ 5.

3.2 Relations with existing paradigms

As presented, our taxonomy offers a novel perspective to consolidate existing work under

a unified framework, hierarchically organized based on the notion of dependence on the

instance and label space. Therefore, we reorganize the corruption models outlined in Tab. 1
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and illustrate them within our taxonomy, as depicted in Tab. 2. 9 Notably, Tab. 2 unveils several

new insights that are not readily evident from Tab. 1.

Firstly, it enables a qualitative comparison of different corruption models by considering their

domain and image spaces (refer to Fig. 1 and Fig. 2). If a kernel exhibits more complexities in its

domain and image, it will induce a more intricate form of corruption. Conversely, corruptions

demonstrating less complexity in the domain and image of the associated kernel can be regarded

as subcases of those with greater complexity. For example, instance-&label-dependent noise

characterized as a 2-dependent label corruption 𝜆 : 𝑋 × 𝑌⇝ 𝑌, is more intricate than class-

conditional noise, a simple label corruption 𝜆 : 𝑌⇝ 𝑌, with more dependence on 𝑋; the latter

can be seen as a subcase of the former with its kernel being constant w.r.t. 𝑋.

Secondly, it reveals that some corruption models in Tab. 1 correspond to multiple corruption

types or combinations of partial corruptions in our taxonomy. This is because their definitions

in Tab. 1 often consider the corruption of either the probability in the 𝑋 space or the 𝑌 space,

leaving freedom for corrupting the other. In extreme cases like concept drift, which assumes

corruption only in the joint distribution, it can be of any corruption type and may not even be

factorized to partial corruptions.

Thirdly, it provides new insights into some corruptions that have been taken for granted to

share the same probabilistic nature as others, but turn out to be non-Markovian corruptions.

Examples include mutually contaminated distributions and selection bias, topics that will be

further elaborated in the following.

Mutually contaminated distributions While being a term with less widespread recognition,

mutually contaminated distributions (mcd) [31, 32, 33, 34] is a popular corruption model that

has been studied in the literature under more familiar names, for example, learning from positive

and unlabeled data [71, 72, 73, 74, 75] in the binary class case (with a specific mixing matrix

defined below), and learning from label proportions [76, 77, 78, 79, 80]. Despite the popularity,

less is understood about how mcd relates to other corruption models. Our framework offers

new insights into such relationships and demonstrates how mcd extends beyond Markovian

corruptions.

To initiate this analysis, we first formally define mcd in the sense of Tab. 1. Fix a measurable

instance space 𝑋, and denote by 𝑃 a distribution over 𝑋 × [𝐾] for [𝐾] B {1, 2, · · · , 𝐾} with

random variables (X, Y) ∼ 𝑃. Let 𝑘 ∈ [𝐾], 𝑃𝑘 B P(X | Y = 𝑘) be the class-conditional distribution,

and 𝜋𝑘 B P(Y = 𝑘) be the base rate.

Definition 11 (Katz-Samuels et al. [34]). Given clean class-conditional distributions P(𝑥) =
[𝑃1(𝑥), . . . , 𝑃𝐾(𝑥)] and some mixing matrix Π = (𝜋𝑚,𝑘)1≤𝑚≤𝑀,1≤𝑘≤𝐾 , under the mcd model,

instead of observing 𝐾 random samples from P(𝑥), we observe 𝑀 random samples from the

contaminated class-conditional distributions P̃(𝑥) = [�̃�1(𝑥), . . . , �̃�𝑀(𝑥)],

�̃�𝑚(𝑥) :=

𝐾∑
𝑘=1

𝜋𝑚,𝑘𝑃𝑘(𝑥) ∀𝑥 ∈ 𝑋 ,

where 𝑚 ∈ [𝑀] denotes the corrupted class, 𝜋𝑚,𝑘 ≥ 0, and

∑
𝑚 𝜋𝑚,𝑘 = 1; equally, in matrix

9Details about the relationships with these corruption instances are given in § S1, and discussions on the

relationships with other data shift taxonomies are given in § S2.
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form,

P̃(𝑥) = ΠP(𝑥) ∀𝑥 ∈ 𝑋 .

This definition has some clear differences with our definition of corruption. First, Def. 11 uses

the class conditional probabilities P, P̃ instead of the joint probability. In our language, this

means expressing corruption via the experiment 𝐸. Secondly, their mixing matrix Π is defined

as a row-stochastic matrix, so it is practically a transposed Markov kernel defined on finite spaces.

We can therefore translate the mcd into our notation as in the following:

�̃�(𝐴) =
∑
𝑌

∫
𝐴

∫
𝑋

𝛿𝑋(𝑥, 𝑑�̃�)𝜅𝑀(�̃� , 𝑑𝑦)𝐸(𝑦, 𝑑𝑥) �̃�(𝑑�̃�) (1)

=

∫
𝐴

[ (
𝜅𝑀 ◦ (𝐸 ◦ 𝛿𝑋)

)
× �̃�

]
(𝑑�̃�, 𝑑�̃�) ≠

∫
𝐴

[ (
𝛿𝑋 ⊗ 𝜅𝑀

)
◦ (𝜋 × 𝐸)

]
(𝑑�̃�, 𝑑�̃�) , (2)

where now �̃� and 𝑃 are joint probabilities, 𝜅𝑀(�̃� , 𝑑𝑦) = Π�̃� ,𝑦 ∈ ℳ(𝑌,𝑌), and 𝑌 B [max(𝐾, 𝑀)]
to get a square matrix. In particular, we underline that �̃�(𝑑�̃�) is a marginal probability on the

corrupted space, while 𝜋(𝑑𝑦) is on the clean one. It is not specified by the authors of [34] how

the corrupted marginal probability is obtained, nor whether it is the same one given in input

as the clean one. Generally, we can always write the following relationship:

�̃�(𝑑�̃�) =
∫
𝑌

𝜆𝑀(�̂� , 𝑑�̃�)𝜋(𝑑�̂�) ,

where 𝜆𝑀 : 𝑌 ⇝ 𝑌, so the variable �̂� is defined on the clean probability space (𝑌,𝒴 ,𝜋),
𝒴 being a suitable 𝜎-algebra. Such formula makes mcd not pairwise, as plugging it in

Eq. (1) violates A 0. This gets even clearer when looking at Eq. (2): the right-hand side

would imply that there exists a single kernel in (𝛿𝑋 ⊗ 𝜅𝑀)(𝑥, �̃�, 𝑑�̃�𝑑𝑦) ∈ ℳ(𝑋 × 𝑌, 𝑋 × 𝑌)
representing the mcd corruption scheme, but such representation is not possible because of

how the mcd kernel acts on 𝐸 by definition. In addition, we underline that the existence of

(𝛿𝑋 ⊗ 𝜅𝑀)(𝑥, �̃�, 𝑑�̃�𝑑𝑦) would still not make a viable Markovian corruption in the sense of

Def. 7 because of the variables not being compatible with the probability 𝑃 for generating

�̃�(𝑑�̃�𝑑�̃�) =
(
𝑃 ◦ (𝛿𝑋 ⊗ 𝜅𝑀)

)
(𝑑�̃�𝑑�̃�) =

∫
𝑋×𝑌 𝑃(𝑑𝑥𝑑𝑦)

(
𝛿𝑋 ⊗ 𝜅𝑀

)
(𝑥, �̃�, 𝑑�̃�𝑑𝑦), the latter being an

ill-posed integral since we have two measures on 𝑦 ∈ 𝑌.

In [32] the authors assume it plausible to have a corrupted label marginal totally unrelated

to the original clean one; we model this case as a degenerate kernel constantly equal to the

output probability, i.e. 𝜆𝑀(�̂� , 𝑑�̃�) = �̃�(𝑑�̃�). The other extreme case is for the corrupted and

clean marginals to not differ, and in such a case we are still in the presence of a corruption that

is not pairwise. That because, having 𝜆𝑀(�̂� , 𝑑�̃�) = 𝛿𝑌(�̂� , 𝑑�̃�) we write the marginal

𝜋(𝑑�̃�) =
∫
𝑌

𝜆𝑀(�̂� , 𝑑�̃�)𝜋(𝑑�̂�) =
∫
𝑌

𝛿𝑌(�̂� , 𝑑�̃�)𝜋(𝑑�̂�) .

We can lastly look at the comparison of mcd with class-conditional noise (ccn) to understand

more in depth its non Markovian nature. Clearly we cannot reduce mcd to ccn, as we already

shown in the above. However, in [32] they prove that ccn can be mapped to the mcd model in

the binary case. It can be trivially extended to multi-class setting by taking

[𝜅𝑀]𝑖 𝑗 B
[𝜆𝐶]𝑖 𝑗�̃� 𝑗∑|𝑌 |
𝑗=1

[𝜆𝐶]𝑖 𝑗�̃� 𝑗
,
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where 𝜆𝐶 is the Markov kernel associated to ccn, and 𝛿𝑋 ⊗ 𝜆𝐶 would be its joint form. In plain

words, the usual definition of ccn via 𝜆𝐶 can be manipulated such that the 𝜅𝑀 will subsume

the label corruption, and the marginal corruption of the mcd is assumed to be a delta, i.e.

𝜆𝑀 = 𝛿𝑌 . However, it would still act on the clean probability as a non-Markovian corruption,

as we have proved above.

Selection bias Another example of corruption model that has been widely studied in the

literature is selection bias. Different definitions has been proposed over the years, as we briefly

discuss in § S1 in comparison with covariate shift. We demonstrate in the following that

selection bias cannot be subsumed by the Markovian corruption framework, when considered

with its classical formulation with the Radon–Nikodym derivative.

Definition 12 (Chapter 3.2, Quiñonero-Candela et al. [14]). Let 𝑍 ⊆ R𝑑 and Borel 𝜎-algebra

𝒵 on 𝑍 form a measurable space. Consider a clean probability space (𝑍,𝒵 , 𝑃) and a corrupted

one (𝑍,𝒵, �̃�), from which we aim to learn. We define selection bias as a general corruption such

that ℒ = (ℓ ,ℋ , 𝑃) and ℒ̃ = (ℓ ,ℋ , �̃�), and that fulfills the following conditions:

1. Support condition, or absolute continuity of the measures: ∃ 𝛼 ∈ 𝐿1(𝑍,𝒵, 𝑃) s.t.

�̃�(𝐴) =
∫
𝐴
𝛼(𝑧)𝑃(𝑑𝑧) ∀𝐴 ∈ 𝒵, where 𝛼 is almost surely unique (Radon–Nikodym

derivative);

2. Selection condition: sup𝑧∈𝑍 𝛼(𝑧) < +∞.

Clearly, selection bias can in principle include different instances of our taxonomy, since its

type is not specified not decided by its characterizing conditions. We now try to understand if

it meets the requirement for being Markovian in the first place. Comparing it with the action

of a general 𝜅 ∈ ℳ(𝑍, 𝑍) on the input probability 𝑃, we get the condition∫
𝐴

∫
𝑍

𝜅(𝑧, 𝑑�̃�)𝑃(𝑑𝑧) =
∫
𝐴

𝛼(𝑧)𝑃(𝑑𝑧) ∀𝐴 ∈ 𝒵 .

It is easy to check that the kernel satisfying the condition is 𝜅(𝑧, 𝑑�̃�) B 𝛿𝑧(𝑑�̃�)𝛼(𝑧), which

respects the definition of kernel, but does not fulfill the Markov property unless 𝛼(𝑧) = 1∀𝑧 ∈ 𝑍.

This kernel is defined such that 𝑃 is corrupted into �̃�, but it does not preserve mass for every

input probability measure, therefore it is not what we are looking for to say that selection bias

is a Markovian corruption. Is this 𝜅 the only possible guess?

Consider a general 𝜅 ∈ ℳ(𝑍, 𝑍). It can be rewritten through its density w.r.t. a suitable

measure, i.e.,

�̃�(𝐴) =
∫
𝐴

∫
𝑍

𝜅(𝑧, 𝑑�̃�)𝑃(𝑑𝑧) =
∫
𝐴

∫
𝑍

𝑘(𝑧, �̃�) 𝜈(𝑑�̃�)𝑃(𝑑𝑧) ∀𝐴 ∈ 𝒵 ,

and defining 𝛽(�̃�) B
∫
𝑍
𝑘(𝑧, �̃�)𝑃(𝑑𝑧), we obtain �̃�(𝐴) =

∫
𝐴
𝛽(�̃�) 𝜈(𝑑�̃�) ∀𝐴 ∈ 𝒵 . Imposing 𝜅 to

act as selection bias, we get 𝛽(𝑧) = 𝛼(𝑧) ∀𝑧 ∈ 𝑍 and 𝜈 = 𝑃 ∈ 𝒫(𝑍), 𝜇 B 𝜈+𝑃
2

-a.e. On the other

hand, the Markov condition asks∫
𝑍

𝑘(𝑧, �̃�) 𝜈(𝑑�̃�) =
∫
𝑍

𝑘(𝑧, �̃�)𝑃(𝑑�̃�) = 1 ∀𝑧 ∈ 𝑍 ⇒ 𝛽(𝑧) = 𝛼(𝑧) = 1 ∀𝑧 ∈ 𝑍 .

Hence, we reached a contradiction and proved that selection bias cannot be directly represented
as a Markov kernel if we impose it to be acting on probabilities exactly as the Radon–Nikodym
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derivative 𝛼. Obviously, there exists a Markovian corruption relating 𝑃 and �̃�, since they are

probability measures and our exhaustiveness argument holds. However, that would not reflect

the “natural” definition of selection bias, acting through the weighting function 𝛼.

4 Consequences of Corruption: Data Processing Equalities

Having identified all the types of pairwise Markovian corruptions, a natural consequent

question is how to systematically compare them. To this end, we can draw insights from the

theory of comparison of statistical experiments [81, 64]. Traditionally, experiments have been

compared through Bayes Risk, or more generally, through measures of information, using

what is known as the Data Processing Inequality, or Blackwell-Sherman-Stein Theorem.10 The

result states that for an experiment 𝐸 and its corrupted counterpart through a suitably defined

Markov kernel 𝜅, we have

brℓ [𝜋 × 𝐸] ≤ brℓ [𝜋 × (𝐸 ◦ 𝜅)] ∀ 𝜋, ℓ ,

where the model class is not restricted. A key point of the theorem is the for all requirement,

which makes the comparison not possible for pairs of experiments that change the direction of

the inequality for some (𝜋, ℓ ), inducing a partial order on the set of experiment. In addition, it

is only stated for corruptions on 𝐸 acting via P1.

Recently, in Williamson and Cranko [23], Data Processing Equality results have also been

studied within the supervised learning framework and under an information-theoretic point

of view. They include more realistic assumptions for Machine Learning, such as a restricted

model class ℋ , a fixed loss of interest ℓ and a suitable prior distribution that associated to the

experiment 𝐸 uniquely identifies the joint distribution 𝑃 ∈ 𝒫(𝑋 × 𝑌). More formally, they are

of the form

br�ℓ◦ℋ [�̃� × �̃�] = brℓ◦ℋ [𝜋 × 𝐸] ,
where the changes in the minimization set, ℓ ◦ ℋ B { (𝑥, 𝑦) ↦→ ℓ (ℎ𝑥 , 𝑦) | ℎ ∈ ℋ ⊆ ℳ(𝑋,𝑌) },
and joint probability, 𝜋 × 𝐸, are indicated by a (̃·) and determined by the Markov corruption

relating the probability spaces. In computer science, data corruption has the consequence of

“produc[ing] unexpected results when [the data are] accessed by the system or the related

application” [83]. By fixing the learning problem we take a similar stance, and start analysing

formally the “unexpected results” with respect to a specific application.

The equality trivially induces an equivalence relation on the space of all possible learning

problems, that we write as

(�ℓ ◦ ℋ , �̃�) ≡br (ℓ ◦ ℋ , 𝑃) .
Williamson and Cranko [23] only considered corruption acting on the sole experiment by

composition, specifically they use what is referred by us as simple 𝑋 and 𝑌 corruption.

Here we also adopt the equality approach to compare the clean and corrupted experiments

through Bayes Risk for a fixed loss function. The equalities formally characterize how the

optimization problem is affected by the different kinds of joint corruption in our taxonomy; the

corruption is therefore acting on the joint probability distribution instead of on the experiment.

A direct consequence is that some results are expressed in terms of experiments, others in

10See [64] for a primer in classical statistical learning theory and [82] for a modern overview from a machine

learning perspective.
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terms of posterior kernel. The section gives us quantitative results in terms of conserved

“information” between corrupted and clean learning problems, and a bridge between the

problems themselves. Interestingly, what we prove is that a Markovian corruption of the

probability distribution is equivalent, in terms of Bayes Risk, to a non-Markovian corruption

involving the loss and/or the model class and induced by a Markov kernel.

Notation and assumptions When introducing Markov kernels in Def. 1, we allowed it to be

defined on different input and output spaces. However, we also align with a more classical

view of kernels as related to Markov chains, considering them modification of the same set

of objects while rearranging the probability measure defined on it. Hence, a corruption from

𝑋 × 𝑌 to 𝑌 has to be considered as a parameterized version of the corruption on 𝑌, where the

parameter is 𝑥. For this reason, we also introduced the operation P4, which allows chaining

while keeping a specified free parameter. A degenerate sub-case takes place when we deal with

a kernel from 𝑋 to 𝑌. We will make use of the notation 𝜅𝑦 , 𝜅𝑥 to express the parameterization,

which is a shortcut for the for 𝜅Y=𝑦 = 𝜅𝑦 , 𝜅X=𝑥 = 𝜅𝑥 respectively.

Two key assumptions will be used in the following:

A1 The loss function ℓ : 𝒫(𝑌) ×𝑌 → R≥0 associated with the learning problem (ℓ ,ℋ , 𝑃)
is proper and bounded.

A2 The br ground-truth minimizer 𝑓 ∗ B ℓ (𝐹X ,Y) ∈ arg min 𝑓 E�̃�[ 𝑓 (X,Y)] for the uncon-

strained problem belongs to the minimization space ℓ ◦ ℋ , i.e., the model class is not

misspecified.

The first assumption restricts the definition of loss function we gave in § 2.2; positivity and

boundedness together ensure the Fubini-Tonelli’s theorem to be applied safely in the proofs.

As for properness, it is known that choosing a proper loss [84] guarantees optimal learning,

wherein the minimization set contains the ground-truth class probability. Therefore, the

first and second assumptions ensure that our Bayes Risk classifier corresponds to the true

minimum 𝐹; otherwise we would have a misspecified model class in the Constrained br, that

does not contain the true posterior, and a loss that might be minimized for some suboptimal

classifier. We remark that, as shown in Williamson et al. [85], a certain class of losses can be

parameterized so to qualify as a proper loss; for this reason, the assumption of properness is

not too restrictive.

In all the following statements, we write the joint corruption action on the learning problem as

the superposition 𝜏 ⊗ 𝜆, where 𝐼(𝜏) = 𝑋 and 𝐼(𝜆) = 𝑌. Their full signature will be provided in

each theorem. Also, we use the notation 𝜅ℱ B {𝜅 𝑓 , ∀ 𝑓 ∈ ℱ } for the action of a kernel on a

compatible set of functions.

Existing result: Data Processing Equalities for combined simple noise As a first step, we

can show that our framework subsumes the existing result proved by Williamson and Cranko

[23]. In our taxonomy, their combined noise takes the name of combined simple noise.

Proposition 13 (br under combined simple noise, Williamson and Cranko [23]). Let

A1 and A2 hold. Consider the clean learning problem (ℓ ,ℋ , 𝑃), 𝐸 : 𝑌 ⇝ 𝑋 its associated
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experiment such that 𝑃 = 𝜋𝑌 × 𝐸 for a suitable 𝜋𝑌 , and 𝐹 : 𝑋 ⇝ 𝑌 its associated posterior such

that 𝑃 = 𝜋𝑋 × 𝐹 for a suitable 𝜋𝑋 . Let (𝜏 : 𝑋 ⇝ 𝑋) ⊗ (𝜆 : 𝑌⇝ 𝑌) be a corruption acting on

this problem. Then,(
ℓ ◦ ℋ , (𝜋𝑌 × 𝐸) ◦ (𝜏 ⊗ 𝜆)

)
=

(
ℓ ◦ ℋ ,𝜋𝑌 ◦

(
(𝐸 ◦ 𝜏) ⊗ 𝜆

) )
≡br

(
𝜏(𝜆ℓ ◦ ℋ),𝜋𝑌 × 𝐸

)
, (3)

or, equivalently(
ℓ ◦ ℋ , (𝜋𝑋 × 𝐹) ◦ (𝜏 ⊗ 𝜆)

)
=

(
ℓ ◦ ℋ ,𝜋𝑋 ◦

(
𝜏 ⊗ (𝐹 ◦ 𝜆)

) )
≡br

(
𝜏(𝜆ℓ ◦ ℋ),𝜋𝑋 × 𝐹

)
. (4)

The functions contained in the new minimization set are defined as

𝜏(𝜆ℓ ◦ ℋ) B {(𝑥, 𝑦) ↦→ [𝜏(𝜆ℓ𝑦 ◦ ℎ)](𝑥), ℎ ∈ ℋ} .

Starting from this simpler result, we can easily observe some properties of corruption that

will be conserved also in the next cases. Consider the hypotheses of Proposition 13, with

𝜏 ⊗ 𝜆 = 𝛿𝑋 ⊗ 𝜆, i.e. a corruption acting only on labels. The formula in Eq. (4) therefore is:

brℓ◦ℋ
[
𝜋𝑋 ◦

(
𝛿𝑋 ⊗ (𝐹 ◦ 𝜆)

) ]
= br(𝜆ℓ◦ℋ)

[
𝜋𝑋 × 𝐹

]
.

When looking at the right-hand side, we see that the 𝜆 component only modifies the loss

function, and leaves the model class untouched. That means, simple label (Markovian) corruptions

are equivalent in Bayes Risk to loss corruptions, which is non-Markovian in the sense of Def. 7,

but induced by a Markov kernel. On the other hand, when considering 𝜏 ⊗ 𝜆 = 𝜏 ⊗ 𝛿𝑌 , we

obtain

brℓ◦ℋ
[
𝜋𝑌 ◦

(
(𝐸 ◦ 𝜏) ⊗ 𝛿𝑌

) ]
= br𝜏(ℓ◦ℋ)

[
𝜋𝑌 × 𝐸

]
,

and in this case notice that the action of 𝜅 = 𝜏 ⊗ 𝜆 affects the whole minimization set when

considering the Bayes Risk on the clean distribution.

Novel Data Processing Equalities for other corruptions We now present the results for each

of the remaining corruption combinations in Fig. 2.

Theorem 14 (br under 2-dependent 𝜏, simple 𝜆). Let A1 and A2 hold. Consider the learning

problem (ℓ ,ℋ , 𝑃) and suppose 𝐸 : 𝑌⇝ 𝑋 is its associated experiment such that 𝑃 = 𝜋𝑌 × 𝐸
for a suitable 𝜋𝑌 . Let (𝜏 : 𝑋 × 𝑌⇝ 𝑋) ⊗ (𝜆 : 𝑌⇝ 𝑌) be a corruption acting on this problem.

Then,(
ℓ ◦ ℋ , (𝜋𝑌 × 𝐸) ◦ (𝜏 ⊗ 𝜆)

)
=

(
ℓ ◦ ℋ ,𝜋𝑌 ◦

(
(𝐸 ◦𝑋 𝜏) ⊗ 𝜆

) )
≡br

(
𝜏(𝜆ℓ ◦ ℋ),𝜋𝑌 × 𝐸

)
.

The functions contained in the new minimization set are defined as

𝜏(𝜆ℓ ◦ ℋ) B {(𝑥, 𝑦) ↦→ [𝜏(𝜆ℓ𝑦 ◦ ℎ)](𝑥, 𝑦), ℎ ∈ ℋ} .

Here in Theorem 14 we have shown the br equality for the experiment 𝐸, in line with the

Comparison of Experiments [64] and Information Equalities literature [23]. However, for some

corruptions the equalities cannot be stated with 𝐸 and the generative formulation of a learning

problem, unless ignoring the joint corruption factorization formula. We hence use the posterior
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kernel 𝐹, i.e. the discriminative formulation of a learning problem, and gain more insights

about the minimization set while paying a price in elegance of the result.

Theorem 15 (br under simple 𝜏, 2-dependent 𝜆). Let A1 and A2 hold. Consider the learning

problem (ℓ ,ℋ , 𝑃) and suppose 𝐹 : 𝑋 ⇝ 𝑌 is its associated posterior such that 𝑃 = 𝜋𝑋 × 𝐹
for a suitable 𝜋𝑋 . Let (𝜏 : 𝑋 ⇝ 𝑋) ⊗ (𝜆 : 𝑋 × 𝑌⇝ 𝑌) be a corruption acting on this problem.

Then,(
ℓ ◦ ℋ , (𝜋𝑋 × 𝐹) ◦ (𝜏 ⊗ 𝜆)

)
=

(
ℓ ◦ ℋ ,𝜋𝑋 ◦

(
𝜏 ⊗ (𝐹 ◦𝑌 𝜆)

) )
≡br

(
𝜏(𝜆ℓ ◦ ℋ),𝜋𝑋 × 𝐹

)
.

The functions contained in the new minimization set are defined as

𝜏(𝜆ℓ ◦ ℋ) B {(𝑥, 𝑦) ↦→ [𝜏(𝜆ℓ(𝑥,𝑦) ◦ ℎ)](𝑥), ℎ ∈ ℋ} .

We can notice, thanks to Theorems 14 and 15, that when corruption involves dependent

structures in the factorization, the loss function or the whole minimization set are modified in

a parameterized, dependent way. Consider, for instance, the action of 𝜆 : 𝑋 × 𝑌 ⇝ 𝑌 on the

minimization set, when 𝜏 = 𝛿𝑋 . By definition, it generates the measurable functions

𝜆ℓ ◦ ℋ = {(𝑥, 𝑦) ↦→ (𝜆ℓ )(ℎ𝑥 , 𝑥, 𝑦) | ℎ ∈ ℋ} = {(𝑥, 𝑦) ↦→ (𝜆ℓ(𝑥,𝑦) ◦ ℎ)(𝑥)} ,

which a is strong change in the definition of the loss function class considered, although a still

valid choice. We additionally underline here that corruptions on 𝑌 only affect the loss function and

do not touch the model class, even in the dependent case.

The next theorems cover the factorizations involving 1-dependent corruptions. In the first case,

we are again forced to use either 𝐸 or 𝐹, depending on the involved factors. We group the two

results in one theorem for brevity.

Theorem 16 (br under a 1-dependent and a 2-dependent). Let A1 and A2 hold. Consider

the clean learning problem (ℓ ,ℋ , 𝑃), suppose 𝐸 : 𝑌⇝ 𝑋 is its associated experiment such that

𝑃 = 𝜋𝑌 × 𝐸 for a suitable 𝜋𝑌 , and 𝐹 : 𝑋 ⇝ 𝑌 its associated posterior such that 𝑃 = 𝜋𝑋 × 𝐹 for

a suitable 𝜋𝑋 .

1. Let (𝜏 : 𝑌⇝ 𝑋) ⊗ (𝜆 : 𝑋 × 𝑌⇝ 𝑌) be a corruption acting on the problem. Then,(
ℓ ◦ℋ , (𝜋𝑌×𝐸)◦(𝜏⊗𝜆)

)
=

(
ℓ ◦ℋ ,𝜋𝑌 ◦

(
𝜏⊗(𝐸◦𝑋𝜆)

) )
≡br

(
𝜏(𝜆ℓ ◦ℋ),𝜋𝑌×𝐸

)
. (5)

The functions contained in the new minimization set are defined as

𝜏(𝜆ℓ ◦ ℋ) B {(𝑥, 𝑦) ↦→ [𝜏(𝜆ℓ(𝑥,𝑦) ◦ ℎ)](𝑦), ℎ ∈ ℋ} .

2. Let (𝜏 : 𝑋 × 𝑌⇝ 𝑋) ⊗ (𝜆 : 𝑋 ⇝ 𝑌) be a corruption acting on the problem. Then,(
ℓ ◦ℋ , (𝜋𝑋 × 𝐹) ◦ (𝜏 ⊗ 𝜆)

)
=

(
ℓ ◦ℋ ,𝜋𝑋 ◦

(
(𝐹 ◦𝑌 𝜏) ⊗ 𝜆

) )
≡br

(
𝜏(𝜆ℓ ◦ℋ),𝜋𝑋 × 𝐹

)
.

The functions contained in the new minimization set are defined as

𝜏(𝜆ℓ ◦ ℋ) B {(𝑥, 𝑦) ↦→ [𝜏(𝜆ℓ𝑥 ◦ ℎ)](𝑥, 𝑦), ℎ ∈ ℋ} .
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Since the 1-dependent 𝜅 and 𝜆 combination is a subcase of both previous corruptions, we can

prove the result as a simple corollary. Notice that this implies both 𝐸 and 𝐹 formulations to

hold.

Corollary 17 (br under 1-dependent 𝜏 and 𝜆). Let A1 and A2 hold. Consider the clean

learning problem (ℓ ,ℋ , 𝑃), 𝐸 : 𝑌⇝ 𝑋 its associated experiment such that 𝑃 = 𝜋𝑌 × 𝐸 for a

suitable 𝜋𝑌 , and 𝐹 : 𝑋 ⇝ 𝑌 its associated posterior such that 𝑃 = 𝜋𝑋 × 𝐹 for a suitable 𝜋𝑋 . Let

(𝜏 : 𝑌⇝ 𝑋) ⊗ (𝜆 : 𝑋 ⇝ 𝑌) be a corruption acting on the problem. Then,(
ℓ ◦ ℋ , (𝜋𝑌 × 𝐸) ◦ (𝜏 ⊗ 𝜆)

)
=

(
ℓ ◦ ℋ ,𝜋𝑌 ◦

(
𝜏 ⊗ (𝐸 ◦ 𝜆)

) )
≡br

(
𝜏(𝜆ℓ ◦ ℋ),𝜋𝑌 × 𝐸

)
.

or, equivalently,(
ℓ ◦ ℋ , (𝜋𝑋 × 𝐹) ◦ (𝜏 ⊗ 𝜆)

)
=

(
ℓ ◦ ℋ ,𝜋𝑋 ◦

(
(𝐹 ◦ 𝜏) ⊗ 𝜆

) )
≡br

(
𝜏(𝜆ℓ ◦ ℋ),𝜋𝑋 × 𝐹

)
. (6)

The functions contained in the new minimization set are defined as

𝜏(𝜆ℓ ◦ ℋ) B {(𝑥, 𝑦) ↦→ [𝜏(𝜆ℓ𝑥 ◦ ℎ)](𝑦), ℎ ∈ ℋ} .

In all the Theorems involving a 1-dependent corruption, the minimization set is heavily

modified. To better understand how, we take a closer look at the functions contained in the

clean and corrupted minimization sets. To see it in details, we first need to slightly rework the

notation for the minimization set. Consider the loss function ℓ (·, 𝑦) as a parameterized one,

i.e. ℓ𝑦(·) : 𝒫(𝑌) → R≥0; then, the set ℓ ◦ ℋ B { (𝑥, 𝑦) ↦→ ℓ (ℎ𝑥 , 𝑦) | ℎ ∈ ℋ ⊆ ℳ(𝑋,𝑌) } can be

equivalently rewritten as { (𝑥, 𝑦) ↦→ (ℓ𝑦 ◦ ℎ)(𝑥) | ℎ ∈ ℋ ⊆ ℳ(𝑋,𝑌) }.

In Eq. (5), we have again the kernel 𝜆 ∈ ℳ(𝑋 × 𝑌,𝑌) acting on the loss; hence, we obtain

ℓ̃(𝑥,𝑦) = ℓ̃ (·, 𝑥, 𝑦) B (𝜆ℓ )(·, 𝑥, 𝑦). Additionally, the whole composition with the model ℎ, i.e.(
ℓ̃(𝑥,𝑦) ◦ ℎ

)
(�̃�), is modified by the action of 𝜏 ∈ ℳ(𝑌, 𝑋), which “swaps” the input �̃� ∈ 𝑋 with

𝑦 ∈ 𝑌 in addition to modifying the function itself. Combining them together, we get the

new minimization set containing functions of the form 𝑓 (𝑥, 𝑦) =
[
𝜏
(
ℓ̃(𝑥,𝑦) ◦ ℎ

) ]
(𝑦), which is

not anymore comparable with the initial form ℓ �̃� ◦ ℎ(�̃�), nor interpretable as a performance

evaluation for the model ℎ.

A similar strong modification is observed for the minimization set in Eq. (6), which contains

functions of the form 𝑓 (𝑥, 𝑦) =
[
𝜏
(
ℓ̃𝑥 ◦ ℎ

) ]
(𝑦) B

[
𝜏
(
(𝜆ℓ )𝑥 ◦ ℎ

) ]
(𝑦). That because, the action of

𝜆 ∈ ℳ(𝑋,𝑌) on ℓ (·, 𝑦) results in a new loss function (𝜆ℓ )𝑥(·) B 𝜆ℓ (·, 𝑥), while the action on the

composition with ℎ is as described in the case above.

The final result of the factorization, involving 𝜏 : 𝑋 × 𝑌 ⇝ 𝑋 and 𝜆 : 𝑋 × 𝑌 ⇝ 𝑌, yields a

negative implication as detailed in the following.

Theorem 18 (br under 2-dependent 𝜅 and 𝜆). Let A1 and A2 hold. Consider the clean

learning problem (ℓ ,ℋ , 𝑃), and let (𝜏 : 𝑋 × 𝑌⇝ 𝑋) ⊗ (𝜆 : 𝑋 × 𝑌⇝ 𝑌) be a corruption acting

on the problem. Then:

1. the action of such corruption on the joint probability 𝑃 is equivalent to the one of the

non-decomposed joint corruption;
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2. the action on the minimization set ℓ ◦ ℋ induces the following br-equivalence(
ℓ ,ℋ , 𝑃 ◦ (𝜏 ⊗ 𝜆)

)
≡br

(
𝜏(𝜆ℓ ◦ ℋ), 𝑃

)
;

3. the functions contained in the new minimization set are defined as

𝜏(𝜆ℓ ◦ ℋ) B {(𝑥, 𝑦) ↦→ [𝜏(𝜆ℓ(𝑥,𝑦) ◦ ℎ)](𝑥, 𝑦), ℎ ∈ ℋ} .

This predicament arises due to the full dependence on the joint space 𝑋 × 𝑌 for both 𝜏 and 𝜆,

making it impossible in general to derive a meaningful decomposition of the action on 𝑃 via P

1, 2 and 4. However, we can still discern the effect of 𝜆 on the loss, as achieved in all previous

cases, and of 𝜏 on the full minimization set. For a detailed analysis and proof, see § S5.

5 Corruption-corrected Learning: Loss-correction Approaches

We now leverage our corruption framework and the derived Data Processing Equalities to

reason about the problem “can we ensure unbiased learning from biased data?”. In this context,

“bias” refers to a non-identical joint corruption acting on a pre-existent target probability,

giving rise to a corrupted training probability. The model trained on the biased data drawn

from this corrupted training probability will then be tested on data drawn from the target

probability, also called the clean probability. The concept of unbiased learning is harder to

formalize depending on the type of corruption; we now make an effort to carefully state its

definition.

Unbiased learning as corruption-corrected learning We start by redefining the concept of

biased data as corrupted probability distribution as data source. That means, we assume the term

biased to refer to a non-identical joint corruption acting on a pre-existent target probability,

giving rise to a corrupted training distribution. The learned model will be then tested on the

data drawn from a target probability, also called clean probability.

As for the goal of reaching unbiased learning, such a task can be interpreted in several different

ways, each of them radically transforming its formalization. Existing work from van Rooyen

and Williamson [26] and Patrini et al. [12] made use of the concept of corruption-corrected
learning (cl). Namely, that is the ability of a model learned on the corrupted distribution �̃�,

to be optimal also for the clean distribution 𝑃 but for a different loss function.11 They therefore

study the form of the loss correction which is enforcing such condition on the model. They

additionally show this method to be equivalent to the “method of unbiased estimators” from

Natarajan et al. [11]. In these works the underlying framework is similar to ours, although only

accounting for the presence of simple 𝑌 corruption, i.e., 𝛿𝑋 ⊗ 𝜆, 𝜆 : 𝑌⇝ 𝑌.

Another closely related loss correction paradigm is importance weighting (iw), originally

introduced for the covariate shift case under model misspecification [13, 86, 40]. This loss

correction technique has the goal of obtaining on the corrupted space a consistent estimator of

the risk on clean distribution. This is a weaker requirement than the cl’s goal of obtaining a

consistent estimator of the loss function, as it is clear when looking at Liu and Tao [87], where

the iw method is applied to label noise. An additional difference between the methods is

11Patrini et al. [12] refers to this task as forward correction.
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that, typically, iw has the additional requirement for the clean distribution to be absolutely

continuous w.r.t. the corrupted one, i.e., 𝑃 ≪ �̃�. This further assumption allows for a simple

loss correction formula based on the importance weights 𝑤(𝑥) B 𝑑𝑃

𝑑�̃�
(𝑥), often rewritten using

their densities w.r.t. the Lebesgue measure. Recently, various attempts to generalize the iw

paradigm to more general distributional changes have been made [88, 89] with the goal of

tackling also more complex scenarios of corruption that modern deep learning algorithms

currently have to face. In these works, while the estimation of suitable weights is implemented

in different ways, the loss correction always takes the form of ℓ̃ (ℎ(𝑥), 𝑦) B 𝑤(𝑥, 𝑦) ℓ (ℎ(𝑥), 𝑦).
Such a formula is similar to the ones we will prove here, but obviously not a subcase; as already

discussed in § 3, there is a fundamental difference between kernels and Radon-Nikodym

derivatives. Additionally, we exclude the model class misspecification case as we only deal

with Markovian corruptions, while iw includes it. For these reasons, a direct comparison of

iw-derived techniques with our setting is not possible on a theoretical level. However, as we

will argue in the following, dealing with attribute noise that is not covariate shift, and even

more generally with joint distributional shift, leads to severe consequences on the optimization

problem. That is proved to happen under the most optimistic set of assumptions; no indication

of it being generally easier in more complex cases involving model misspecification is given by

our analysis. We provide a negative result at the end of the section, underlying the fundamental

differences distinguishing label and attribute corruption. This ultimately suggests that, in case

of uncertainty about the type of attribute noise present in the data, a practitioner should avoid

using simple loss correction methods.

5.1 The Bayesian inverse of a Markov kernel

To study the cl problem under our framework, we first need to define a way to reverse the

corruption process. In van Rooyen and Williamson [26] this problem was solved by introducing

the subclass of reconstructible kernels: they are considered in finite spaces and are defined as

the left inverse of the stochastic matrix representing the Markov kernel. It has the drawback of not

necessarily being a transition kernel. For instance, in Patrini et al. [12] the authors underline

that the corrected loss with reconstructible kernels can assume negative values. This issue

exacerbates when employing unbounded losses, e.g., cross-entropy, where the corrected loss

can be unbounded from below. Moreover, they discuss that loss correction with reconstructible

kernels can be problematic when the condition number of the kernel matrix is large, since the

reconstruction computation becomes highly sensitive to perturbations of the kernel matrix.

We introduce here the Bayesian inverse of a Markov kernel, that instead preserves the Markov

property.

Definition 19. The Bayesian inverse of a Markov kernel 𝜅 : 𝑍1 ⇝ 𝑍2 with the property

�̃� = 𝑃 ◦ 𝜅 for 𝑃 ∈ 𝒫(𝑍1), �̃� ∈ 𝒫(𝑍2) is defined as a Markov kernel 𝜅†
: 𝑍2⇝ 𝑍1, such that

1. 𝑃 = �̃� ◦ 𝜅†
, i.e., it reverses the action on the fixed input and output probabilities;

2. 𝑃×𝜅 = �̃�×𝜅†
, i.e., it induces the same coupling for the fixed input and output probabilities.

We will refer to the Bayesian inverse of the corruption kernel as the cleaning kernel. In general,

the Bayesian inverse is not unique, since it corresponds to a class of equivalence induced by the

probability measures on 𝑍1 and 𝑍2. However, we are always sure it exists given the assumption

of using standard Borel measure spaces when defining Markov kernels. In the discrete case,

the Bayesian inverse always exists and is defined by Bayes rule. Furthermore, it is uniquely

defined �̃�-a.s. More explanations about this object and its properties are given in § S3.
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In the following, we assume 𝑍1 = 𝑍2 = 𝑍 = 𝑋 × 𝑌 to match the setting of our taxonomy of

corruption. The Bayesian inversion operation has the desirable property of preserving the

expectations. More formally, one can easily prove that the following equality holds for all

𝑓 ∈ 𝐿0(𝑍,R):
EZ∼𝑃[ 𝑓 (Z)] = EZ̃∼�̃�=𝑃◦𝜅[𝜅† 𝑓 (Z̃)] . (7)

5.2 Corruption-corrected learning with Bayesian inverse

The cl paradigm, as defined in the literature, aims to find a formula for the corrected loss

function ℓ̃ that depends on ℓ and the considered corruption of the learning problem. In our case,

the latter is identified by the kernel 𝜅 and its inversion 𝜅†
. We formally restate the paradigm as

solving for some ℓ̃ the problem

brℓ◦ℋ (𝑃) = brℓ̃◦ℋ (�̃�) , minimized by the same ℎ∗ ∈ ℋ . (8)

Considering a cleaning kernel sending ℒ̃ = (ℓ̃ ,ℋ , �̃�) to ℒ = (ℓ ,ℋ , 𝑃) of the form 𝜅† =

𝛿𝑋 ⊗ 𝜆, 𝜆 : 𝑌⇝ 𝑌, we recover the conditions of Proposition 13 and know that such corruption

case only affects the loss function. Using the Bayesian inverse as in Def. 19, we can rewrite the

corruption action on the learning problem as the equivalence relation

(ℓ ◦ ℋ , 𝑃) ≡br (𝜆ℓ ◦ ℋ , 𝑃 ◦ (𝛿𝑋 ⊗ 𝜆†)) ,

which is in line with the first part of the cl condition in Eq. (8), involving the br. Thanks to the

property of the weak derivative in Eq. (7), we are sure that

E𝑃[(ℓ ◦ ℎ)(𝑍)] = E𝑃◦(𝛿𝑋⊗𝜆†)[(𝜆ℓ ◦ ℎ)(𝑍)] ∀ ℎ ∈ ℋ .

Therefore the second part of Eq. (8) is fulfilled since the two quantities will be minimized on

the same hypothesis, and the loss correction formula is ℓ̃ = 𝜆ℓ , analogously to [26].

We can extend such paradigm to the 𝜆 : 𝑋 × 𝑌⇝ 𝑌 case, as from Theorem 15 we see that also

in the dependent case label corruption only affects the loss function.

Theorem 20. Let (ℓ ,ℋ , 𝑃) be a clean learning problem and (𝜅†(ℓ ◦ ℋ), 𝑃 ◦ 𝜅) its associated

corrupted one. Let 𝜅†
be the joint cleaning kernel reversing 𝜅, such that assumptions A1 and 2

hold for the said problems, and such that 𝜅† = 𝛿𝑋 ⊗ 𝜆. When 𝜆 ∈ ℳ(𝑌,𝑌), we have

ℓ̃ (ℎ(�̃�), �̃�) B (𝜆ℓ ) (ℎ(�̃�), �̃�) ∀ (�̃� , �̃�) ∈ 𝑋 × 𝑌 ,

while, when ℳ(𝑋 × 𝑌,𝑌) we have

ℓ̃ (ℎ(�̃�), �̃� , �̃�) B (𝜆ℓ ) (ℎ(�̃�), �̃� , �̃�) ∀ (�̃� , �̃�) ∈ 𝑋 × 𝑌 .

We defer the formal proof of the statement to § S6, and only underline here that our result

matches the one from van Rooyen and Williamson [26], although using a correction that is in

general different form the one induced by the kernel reconstruction.

5.3 Generalizing corruption-corrected learning beyond label corruption

For corruptions more complex than simple 𝑌 corruption, we cannot guarantee cl as previously

stated. When starting from our br results for cases where 𝑋 corruption 𝜅 ≠ 𝛿𝑋 is included in
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the factorization of the full corruption, the model class will also be affected – see Proposition 13,

Theorems 14 to 16 and 18, and Corollary 17. The equivalence relation therefore is general one,

i.e.,

(ℓ ◦ ℋ , 𝑃) ≡br (𝜅†(ℓ ◦ ℋ), 𝑃 ◦ 𝜅) .
Notice that if we assume for 𝜅 a feasible factorization from Fig. 2, we cannot say anything about

the factorization of 𝜅†
unless we only deal with simple corruptions. For this reason, in the

following we will assume a factorization 𝜅† = 𝜏 ⊗ 𝜆.

The corruption effect on loss and model class is, in this most general case, indistinguishable;

we are not able to rewrite the set 𝜅†(ℓ ◦ ℋ) as the composition ℓ̃ ◦ ℋ̃ , let alone ℓ̃ ◦ ℋ as per

the cl case. In other words, our br equalities do not allow to generalize cl to these other

corruption cases cases. However, we can still gain some understanding on how corruptions

involving a non-identical kernel corrupting the attributes change the corruption-corrected

learning problem. For this reason, we formalize a weakened version of the cl paradigm,

requiring to find a loss correction formula ℓ̃ that depends on ℓ and 𝜅†
such that

brℓ◦ℋ (𝑃) = brℓ̃◦ℋ (�̃�) , minimized by the same 𝑓 ∗ ∈ (ℓ ◦ ℋ) ∩ 𝜅†(ℓ ◦ ℋ) . (9)

We refer to this new paradigm as generalized corruption-corrected learning (gcl). As it is

currently stated, it is not necessarily well-posed since the existence of such a 𝑓 ∗ is not guaranteed.

We then need to discuss which further assumptions are needed.

Additional assumption for gcl The use of the Bayesian inverse ensures the existence of a

function 𝑓 ∗ ∈ ℓ ◦ ℋ ∩ 𝜅†(ℓ ◦ ℋ) that minimizes the Bayes Risk, i.e.

𝑓 ∗ ∈ arg min

𝑓 ∈ℓ◦ℋ
E𝑃 𝑓 (𝑍) and 𝑓 ∗ ∈ arg min

𝑓 ∈𝜅†(ℓ◦ℋ)
E𝑃◦𝜅 𝑓 (𝑍) .

In general, we are not sure that the corrupted minimization set 𝜅†(ℓ ◦ ℋ) can be rewritten in a

factorized fashion, i.e. 𝜅†(ℓ ◦ ℋ) = ℓ̃ ◦ ℋ for some corrected loss ℓ̃ . However, by introducing

one further assumption, we can get to a loss correction results so that the learned hypothesis

on �̃� will have the same performance scores 𝑓 ∗ as the optimal on (ℓ ,ℋ , 𝑃),12 while ensuring

𝑓 ∗ = ℓ̃ ◦ ℎ̃∗ ∈ (ℓ ◦ ℋ) ∩ 𝜅†(ℓ ◦ ℋ). This is, formally, solving the problem of gcl.

Let us consider the composed representation of the function 𝑓 ∗ in the clean (test) minimization

set, which is 𝑓 ∗ = ℓ ◦ ℎ∗. We want to construct a suitable composed representation for 𝑓 ∗ also

in the space 𝜅†(ℓ ◦ ℋ), namely 𝑓 ∗ = ℓ̃ ◦ ℎ̃∗ such that ℎ̃∗ ∈ ℋ and ℎ̃∗ is a minimizer for ℓ̃ . This

translates to the condition

𝑓 ∗ = ℓ̃ ◦ ℎ̃∗ ∈ 𝜅†(ℓ ◦ ℋ) s.t. ℎ̃∗ ∈ arg min

ℎ∈ℋ
EZ∼𝑃◦𝜅

[
(ℓ̃ ◦ ℎ)(Z)

]
.

While we observe that we are guaranteed to have such ℓ̃ at least in the case of ℎ̃∗ being invertible,13

the practical feasibility of this assumption, as well as whether alternative conditions may fulfill

the goal of gcl, are beyond the scope of the current analysis. We postulate its existence as the

first part of our assumption.

12In plain words, the values assumed by the loss on the best hypothesis.

13This is easy to check: take ℎ∗ invertible as a function ℎ̃∗ : 𝑋 → 𝒫(𝑌), it would ensure the existence of such a

loss, since ℓ̃ (𝑝, 𝑦) B ℓ (ℎ∗((ℎ̃∗)−1(𝑝)), 𝑦). A direct consequence of this is that requiring ℎ∗ = ℎ̃∗ would imply ℓ = ℓ̃ ,

which is not a case of interest since no correction would be needed.
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Since in general 𝜅†( 𝑓 ∗) ≠ 𝑓 ∗, we have that: ∃ℎ′ ∈ ℋ s.t. 𝜅†(ℓ ◦ ℎ′) = ℓ̃ ◦ ℎ̃∗. We discard the

case ℎ′ = ℎ∗, so to avoid imposing the trivial condition ℓ ◦ ℎ∗ = ℓ̃ ◦ ℎ̃∗ = 𝜅†(ℓ ◦ ℎ∗) = 𝑓 ∗. In

this subcase, we would have that brℓ◦ℋ [𝑃] = brℓ◦ℋ [𝜅 ◦ 𝑃], i.e., the corruption is harmless to

Bayes Risk. We choose the corrected loss function so that corrupted optimum is ℎ̃∗ = ℎ′. This

provides us a bridge between the the original and the corrected loss functions.

A 3 There exist a loss function ℓ̃ such that 𝑓 ∗ = ℓ̃ ◦ ℎ̃∗ ∈ 𝜅†(ℓ ◦ ℋ), with 𝑓 ∗ being

also a minimizer of the problem min 𝑓 ∈ℓ̃◦ℋ EZ∼𝑃◦𝜅 [ 𝑓 (Z)], and that satisfies the equality

𝜅†(ℓ ◦ ℎ̃∗) = ℓ̃ ◦ ℎ̃∗.

We can now proceed to reason about loss correction in this case. It is worth noting again that

we do not delve into analyzing the restrictiveness of this assumption or methods to test the

existence of such a structure; our interest is solely to showcase its implications for gcl.

Loss correction formula for gcl We now give the correction results for all the corruption case

lying within the gcl paradigm, while deferring the proof to § S6. Recall that the notation 𝜇# 𝑓 (𝑧)
stands for the push-forward probability measure of the distribution 𝜇 through the function 𝑓 .

In the following we will use such notation for kernels. For instance, let 𝜏(�̃� , 𝑑𝑥) ∈ ℳ(𝑋, 𝑋)
and ℎ(𝑥, 𝑑𝑦) ∈ ℳ(𝑋,𝑌): by definition of kernel, 𝜏 is a measure when fixing �̃� ∈ 𝑋 and

ℎ : 𝑋 → 𝒫(𝑌) is a function. Hence, if we write (𝜏#ℎ)(�̃�)(𝐴) B 𝜏(ℎ−1(𝐴), �̃�) , 𝐴 ⊂ 𝒫(𝑌), that is

a family of distributions defined on a set of probability measures on 𝑌, evaluated on 𝐴 and

indexed by �̃�. Since it is indexed and induced by Markov kernels, we can see it as a posterior

probability on the set 𝒫(𝑌), given �̃�.

Theorem 21. Let (ℓ ,ℋ , 𝑃) be a clean learning problem and (𝜅†(ℓ ◦ ℋ), 𝑃 ◦ 𝜅) its associated

corrupted one. Let 𝜅†
be the joint cleaning kernel reversing 𝜅, such that assumptions A1 and 2

hold for the said problems, and such that A3 holds for 𝜅† = 𝜏 ⊗ 𝜆. Hence, provided that ℓ𝜉 is a

function in 𝐿0

(
𝒫(𝑌), (𝜏#ℎ)(𝜉)

)
, with 𝜉 being either �̃� or �̃� depending on the case, we have:

1. When 𝜅†
is of the form (𝜏 : 𝑋 ⇝ 𝑋) ⊗ (𝜆 : 𝑌⇝ 𝑌), or (𝜏 : 𝑋 ×𝑌⇝ 𝑋) ⊗ (𝜆 : 𝑌⇝ 𝑌),

or (𝜏 : 𝑋 ⇝ 𝑋) ⊗ (𝜆 : 𝑋 × 𝑌⇝ 𝑌), we have

ℓ̃ (ℎ, �̃�, �̃�) B Eu∼(𝜏#ℎ)(�̃�)[𝜆ℓ (u, �̃�)] ∀ (�̃� , �̃�) ∈ 𝑋 × 𝑌 .

For the cases that involve a 2-dependent corruption, for the former 𝜅†
factorization we have

𝜆(ℓ ) = 𝜆�̃�(ℓ ) – inducing 𝜆ℓ (u, �̃� , �̃�), while we get (𝜏#ℎ)(�̃�) = (𝜏#ℎ)(�̃� , �̃�) for the latter.

2. When 𝜅†
is of the form (𝜏 : 𝑌⇝ 𝑋) ⊗ (𝜆 : 𝑋 ⇝ 𝑌), we have

ℓ̃ (ℎ, �̃�, �̃�) B Eu∼(𝜏#ℎ)(�̃�)[𝜆ℓ (u, �̃�)] ∀ (�̃� , �̃�) ∈ 𝑋 × 𝑌 .

3. When 𝜅†
is of the form (𝜏 : 𝑌 ⇝ 𝑋) ⊗ (𝜆 : 𝑋 × 𝑌 ⇝ 𝑌), or (𝜏 : 𝑋 × 𝑌 ⇝ 𝑋) ⊗

(𝜆 : 𝑋 ⇝ 𝑌), we respectively have

ℓ̃ (ℎ, �̃�, �̃�) B Eu∼(𝜏#ℎ)(�̃�)[𝜆ℓ (u, �̃� , �̃�)] ∀ (�̃� , �̃�) ∈ 𝑋 × 𝑌 ;

ℓ̃ (ℎ, �̃�, �̃�) B Eu∼(𝜏#ℎ)(�̃� ,�̃�)[𝜆ℓ (u, �̃�)] ∀ (�̃� , �̃�) ∈ 𝑋 × 𝑌 .

4. When 𝜅†
is of the form (𝜏 : 𝑋 × 𝑌⇝ 𝑋) ⊗ (𝜆 : 𝑋 × 𝑌⇝ 𝑌), we have

ℓ̃ (ℎ, �̃�, �̃�) B Eu∼(𝜏#ℎ)(�̃� ,�̃�)[𝜆ℓ (u, �̃� , �̃�)] ∀ (�̃� , �̃�) ∈ 𝑋 × 𝑌 .
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Label vs attribute corruption The corrections found in this section are more complex than

the ones defined in previous work [26, 12], which only considers a label noise setting similar

to our cl for simple label corruption. Our version, Theorem 20, further extends the result by

including the dependent label corruption. The second set of results, included in Theorem 21,

are only valid in the gcl setting and assuming A3, and not for cl. Therefore, under a Bayes risk

point of view and under our assumptions A1-A3, there is a fundamental difference between label

and attribute corruption: they induce distinct corrupted learning settings, and traditional loss

correction does not ensure unbiased learning in the sense of cl.

When minimized, the corrected losses will, by construction, give back the hypothesis ℎ̃∗. Since

ℓ ◦ ℎ∗ = ℓ̃ ◦ ℎ̃∗, we achieve the gcl goal. That is, we achieve unbiased learning in the sense of

matching loss scores and in the distributional sense. However, if no additional condition is

imposed, we have no guarantee for ℎ̃∗ to be somehow close to ℎ∗; this result should not be taken

as new tool for defining robust losses. In fact, Theorem 21 should be interpreted as a negative

result: even assuming that a factorization ℓ̃ ◦ ℎ̃∗ exists, and that ℎ̃∗ is close to ℎ∗ according

to some metric, classical loss correction is still not enough for achieving generalization in a

corruption setting that involves a attribute corruption. One should also account for the set of

posterior probabilities 𝜏#ℎ̃∗ and average on it, instead of only “reweighting” the loss.

6 Conclusions

We proposed a comprehensive and unified framework for general corruption, extending its

definition also to model class and loss function changes. We did so by using Markov kernels,

and systematically studying corruption in three key aspects: classification, consequence,

and correction. The choice of working with Markov kernels enables the use of information-

theoretical tools, and provides an alternative interpretation of corruption as an observation

channel through which we get to see our data distribution. This mathematical modelization

allows to consider data as a dynamic element of a learning problem, as opposed to the view of

data as static facts and true representations of reality.

We established a new taxonomy for Markovian corruption, yielding qualitative comparisons

between corruption models in terms of the corruption hierarchy. To gain a deeper understanding

of corruption, we analyzed their consequences by proving Data Processing Equalities for Bayes

Risk. Given different possible factorizations of a corruption of the joint space, the learning

problem is affected in different ways. Furthermore, we applied such equalities for obtaining

loss correction formulas. Such an application is rather conventional, and usually leads to a

proposed mitigation for the specific model considered. In this work, we do not propose any

mitigation algorithm, but analyze the fundamental difference between label and attribute noise.

The Data Processing Equality results together with the analysis carried on in Section § 5 lead

us to the following conclusions:

• Label and attribute corruption differ in how they change the learning problem. The

former does not influence the model class; the latter changes model class and loss function

in a generally non-disentangable way.

• Classical corrected learning (cl) is not an adequate paradigm to study general corruption.

For cases involving non-identical attribute corruption, we introduce a more general

setting named generalized corrected learning (gcl).

• Loss correction formulas for attribute corruptions require strong assumptions and involve
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an additional component, the expectation over the set of all 𝜏#ℎ predictions. This implies

a negative result, that suggests that standard loss corrections techniques do not guarantee

generalization when dealing with attribute corruption.

Limitations and future work We considered data as probability distributions, implicitly

assuming that each dataset has an associated probabilistic generative process. We treated

corruption as Markov kernels, under the strong assumption of having full access to their

actions. We note that in some cases Markov kernels can be estimated from corrupted data

[87, 90], but this question in general is still open and needs further investigation. We analyzed

the consequences of corruption through Bayes risks without accounting for sampling or

optimization. Bridging the gap between the distributional-level and the sample-level results

would be the next step for this study, which requires tailored ad-hoc analyses. Other directions

for making this framework more practically usable include developing quantitative methods to

compare corruption severity and investigating the effects of optimization algorithms on the

analysis.

From a more theoretical point of view, future work includes investigating the non-Markovian

corruption classes and non-pairwise corruptions. As we pointed out in § 3, model misspecifica-

tion lies within the general corruption class, and might be studied alone as well as an additional

corruption “chained” to a Markovian one. Similarly, changes in loss function can be analyzed

further. Such developments would effectively generalize beyond the limitations imposed by

Assumptions A1 and 2. Additionally, the topic of non-probabilistic corruption [91, 92], only

superficially touched in the present work, needs a deeper analysis. It is unclear whether the

current theoretical tools, deployed when dealing with distributional changes, are enough for

characterizing and potentially mitigating their consequences on learning problems.
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S1 Related existing paradigms

A Markov kernel-based taxonomy is substantially different from previous work. Therefore, in

this section, we carefully examine how existing corruption models fit into our taxonomy. This

involves reformulating them as specific instances of Markov corruptions, thereby unveiling

their relationships within the corruption hierarchy presented in Fig. 1a.

The primary challenge stems from the lack of consistency across the literature; different authors

sometimes refer to the same corruption process with different names or use the same name

to denote different settings. For instance, classical studies on concept drift [51, 53] generally

define it as a mismatch in the joint distributions between two different learning environments,
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e.g., training and test times. Meanwhile, works such as in Moreno-Torres et al. [16] characterize

it further by necessitating unchanged attribute or label priors.

We attempt a partial unification of the corruption models we are aware of by establishing con-

nections as depicted in Tab. 2, while additional technical intricacies regarding correspondences

and relationships are elucidated in subsequent sections.

S1.1 Simple corruptions

The most well-known and widely studied corruptions in the literature are the simple cases,

where the corruption solely acts on the feature space 𝑋 or the label space 𝑌. We discuss in the

following various examples of simple corruptions, i.e. in the sets ℳ(𝑋, 𝑋) and ℳ(𝑌,𝑌), as

defined in Fig. 1.

Attribute noise The problem of attribute noise concerns errors that are introduced into

the observations of attribute X, leaving the labels untouched [20, 21, 22, 23]. Widely studied

examples of such errors include erroneous attribute values and missing attribute values. Instead

of observing (X, Y), in the first case, one can only observe a distorted version of X, e.g. (X+N, Y)
with some independent noise random variable N ⊥⊥ X; in the second case, one’s observation of

X contains missing values.

Let X = (𝑥𝑖 𝑗)1≤𝑖≤𝑛,1≤ 𝑗≤𝑑 be the complete input matrix, with |𝑋 | = 𝑛, and M = (𝑚𝑖 𝑗)1≤𝑖≤𝑛,1≤ 𝑗≤𝑑
be the associated missingness indicator matrix such that 𝑚𝑖 𝑗 = 1 if 𝑥𝑖 𝑗 is observed and 𝑚𝑖 𝑗 = 0

if 𝑥𝑖 𝑗 is missing. Then the corresponding observed input matrix is X𝑜 = X ⊙ M and its

missing counterpart is X𝑚 = X − X𝑜 , where ⊙ denotes Hadamard product. The missing

value mechanisms are further categorized into three types based on their dependencies

[93, 94]:14

• Missing completely at random (mcar): the cause of missingness is entirely random, i.e.,

𝑝(M | X) = 𝑝(M) does not depend on X𝑜 or X𝑚 . This corresponds to having a trivial Markov

kernel acting on the clean distribution, 𝜏 : {∗}⇝ 𝑋 ≡ 𝜇 ∈ 𝒫(𝑋).

• Missing not at random (mnar): the cause of missingness depends on both observed

variables and missing variables, i.e., 𝑝(M | X) = 𝑝(M | X𝑜 ,X𝑚). This case corresponds to

our non-trivial 𝜏 : 𝑋 ⇝ 𝑋.

• Missing at random (mar): the cause of missingness depends on observed variables but

not on missing variables, i.e., 𝑝(M | X) = 𝑝(M | X𝑜). This case is a sub-case of the non-trivial

𝜏 : 𝑋 ⇝ 𝑋, which is not directly specifiable by our taxonomy because of the different

premises it is built on.

Class-conditional noise (ccn) The problem of ccn arises in situations where, instead of

observing the clean labels, one can only observe corrupted labels that have been flipped with a

label-dependent probability, while the marginal distribution of the instance remains unchanged

[11, 12, 26, 23]. ccn is an example of simple label corruption, ℳ(𝑌,𝑌), that can be formulated

as a corrupted posterior. For classification tasks,𝑌 is assumed to be a finite space. Therefore the

corruption 𝜆 : 𝑌⇝ 𝑌 can be represented by a column-stochastic matrix T = (𝜌𝑖 𝑗)1≤𝑖≤|𝑌 |,1≤ 𝑗≤|𝑌 |
which specifies the probability of the clean label Y = 𝑗 being flipped to the corrupted label

14Assume the rows 𝑥𝑖 , 𝑚𝑖 are assigned a joint distribution. and X and M are treated as random variables.
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Ỹ = 𝑖, i.e., ∀𝑖 , 𝑗 , 𝜌𝑖 𝑗 = 𝑝(Ỹ = 𝑖 | Y = 𝑗). The corrupted joint distribution can be rewritten as

�̃� =
∑
𝑌 𝑝(Ỹ | Y) 𝑝(Y | X) 𝑝(X). In the literature, T is known as the noise transition matrix with its

elements 𝜌𝑖 𝑗 referred to as the noise rates, and is useful for designing loss correction approaches

(our results in § 5 significantly generalize existing loss correction results in ccn to our broad

class of simple, dependent and combined corruptions) [12]. Prior to the proposal of the ccn

model, early studies primarily focused on a symmetric subcase of T in binary classification,

known as random classification noise (rcn) [9, 24, 25]. Note that in rcn, the output of the

corruption 𝜆 : 𝑌⇝ 𝑌 remains constant w.r.t. its parameters. Recently, some variants of ccn

have been further developed, for example, in Ishida et al. [95, 96], complementary labels are

modeled via a symmetric T whose diagonal elements are all equal to zero.

S1.2 Dependent corruptions

Although simple corruptions have been well studied and understood, more complexities

arise in dependent cases, yet they receive relatively less attention and understanding. We

discuss in the following examples of the dependent corruptions in the sets ℳ(𝑌, 𝑋), ℳ(𝑋,𝑌),
ℳ(𝑋 × 𝑌, 𝑋) and ℳ(𝑋 × 𝑌,𝑌), as defined in Fig. 1a.

Style transfer Style transfer refers to the process of migrating the artistic style of a given image

to the content of another image [43, 44]. The primary objective is to recreate the second image

with the designated style of the first image. In recent developments, it has also been applied to

audio signals [45]. If we represent the style of the first image by Y, and the second image and

the reconstructed image as X and X̃ respectively, style transfer serves as an illustrative example

of 𝜏 : 𝑌⇝ 𝑋 “corruption”. Note that the aim here is to learn how to corrupt instead of learning

in the presence of corruption. We mention this connection because our framework can also be

used also with different purposes, but underline that our br results are not applicable to this

case. The process of style transfer can be formulated as a corrupted posterior.

Adversarial noise In contrast to additive random attribute noise, adversarial noise is specifi-

cally crafted by adversaries for each instance with the intent of changing the model’s prediction

of the correct label [46, 47, 48, 49, 50]. Such adversarial examples raise significant security

concerns as they can be utilized to attack machine learning systems, even in scenarios where

the adversary has no access to the underlying model. The adversarial noise is an example of

𝜏 ∈ ℳ(𝑋 × 𝑌, 𝑋) corruption that can be formulated as a corrupted experiment.

Instance-dependent noise (idn) As a counterpart to ccn, the problem of idn arises in

situations where, instead of observing the clean labels, one can only observe corrupted labels

that have been flipped with an instance-dependent (but not label-dependent) probability

[97, 27]. It is a special case of the iln noise model, which we will describe later. idn is an

example of 𝜆 ∈ ℳ(𝑋,𝑌) corruption that can be formulated as a corrupted experiment.

Instance- and label-dependent noise (iln) iln is the most general label noise model, which

arises in situations where, instead of observing clean labels, one can only observe corrupted

labels that have been flipped with an instance- and label-dependent probability [27, 28, 29, 30].

iln is an example of 𝜆 ∈ ℳ(𝑋×𝑌,𝑌) corruption that can be formulated as a corrupted posterior.

Compared to the matrix representation T of the ccn corruption 𝜅𝑌�̃� , the iln corruption 𝜅𝑋𝑌�̃�
can be represented by a matrix-valued function of the instance T(𝑥) = (𝜌𝑖 𝑗(𝑥))1≤𝑖≤|�̃� |,1≤ 𝑗≤|𝑌 |
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which specifies the probability that the instance X = 𝑥 with the clean label Y = 𝑗 being flipped

to the corrupted label Ỹ = 𝑖, i.e., ∀𝑖 , 𝑗 , 𝜌𝑖 𝑗(𝑥) = 𝑝(Ỹ = 𝑖 | Y = 𝑗 ,X = 𝑥). Some subcases of iln

have also been studied in the literature, for example, the boundary-consistent noise, which

considers a label flip probability based on a score function of the instance and label. The score

aligns with the underlying class-posterior probability function, resulting in instances closer to

the optimal decision boundary having a higher chance of its label being flipped [98].

S1.3 Combined corruptions

Given the simple and dependent corruptions, we can combine them to generate 2-parameter

joint corruptions, i.e., ℳ(𝑋 × 𝑌, 𝑋 × 𝑌). Below, we discuss some examples of combined noise

models illustrated in Fig. 1b.

Combined simple noise The simplest combined corruption is the combined simple noise,

where the observations of attribute X are subject to some errors and the observed labels Y
are flipped with a label-dependent probability [23]. Combined simple noise is an example of

𝜏 : 𝑋 ⇝ 𝑋 ⊗ 𝜆 : 𝑌⇝ 𝑌 corruption that can be formulated as a corrupted experiment.

Target shift In the literature, target shift, also known as prior probability shift, refers to

the situation where the prior probability 𝑝(Y) is changed while the conditional distribution

𝑝(X | Y) remains invariant across training and test domains [35, 36, 37, 38]. The definition

is established by assuming certain invariance from a generative perspective of the learning

problem, that is, considering it as a corruption of the experiment according to 𝑃 = 𝜋𝑌 × 𝐸.

However, when examining the learning problem from a discriminative perspective, the change

in 𝑝(Y) may cause changes in both 𝑝(X) and 𝑝(Y | X) due to the Bayes rule. Existing frameworks

for the categorization of target shift do not capture these implications, as they are based on the

notion of invariance from a single perspective of the 𝐸 direction. In contrast, our framework

categorizes corruptions based on their dependencies and therefore is advantageous by offering

dual perspectives from both the 𝐸 and 𝐹 directions. Specifically, target shift is a subcase of

𝜏 : 𝑌⇝ 𝑋 ⊗ 𝜆 : 𝑋 ×𝑌⇝ 𝑌 corruption and can be formulated either as a corrupted experiment

or as a corrupted posterior. The corrupted distribution is given by �̃� = (𝜋𝑌 × 𝐸) ◦ (𝜏 ⊗ 𝜆) or

�̃� = (𝜋𝑋 × 𝐹) ◦ (𝜏 ⊗ 𝜆).

Covariate shift In the literature, covariate shift refers to the situation where the marginal

distribution 𝑝(X) is changed while the class-posterior probability 𝑝(Y | X) remains invariant

across training and test domains [13, 39, 40, 15]. Similarly to target shift, the definition is based

on assuming invariance from the discriminative perspective of the learning problem, treating

it as a corruption of the posterior using 𝑃 = 𝜋𝑋 × 𝐹. However, when viewed from a generative

perspective, changes in 𝑝(X) may lead to changes in 𝑝(Y) and 𝑝(X | Y) due to the Bayes rule.

Covariate shift is a subcase of 𝜏 : 𝑋 × 𝑌⇝ 𝑋 ⊗ 𝜆 : 𝑋 ⇝ 𝑌 corruption and can be formulated

either as a corrupted posterior or as a corrupted experiment. The corrupted distribution is

given by �̃� = (𝜋𝑌 × 𝐸) ◦ (𝜏 ⊗ 𝜆) or �̃� = (𝜋𝑋 × 𝐹) ◦ (𝜏 ⊗ 𝜆).

It is important to clarify that while covariate shift is sometimes used interchangeably with

sample selection bias in certain literature, the two are not synonymous. This point is also

mentioned by the author of the original covariate shift paper [13] in the book by Quiñonero-

Candela et al. [14, Chapter 11]: they claim covariate shift to be a special form of selection bias

when the latter is taken under assumption of missing at random, and in general, selection
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bias without such a structure is difficult. However, based on our definition of selection bias in

Def. 12, it is not true that covariate shift is a special form of selection bias. Nonetheless, various

definitions exist in the literature and they can relate in different ways.

We introduce here a classical definition of selection bias, which leads to the one we gave in the

main text, see [14, Chapter 3.2]. Let S be a binary selection variable deciding whether a datum

is included in the training set (S = 1) or excluded from it (S = 0). The corrupted distribution by

selection bias can be expressed as �̃�(X, Y) = 𝑃(X, Y | S = 1). By assuming the missing at random

structure, where S is independent of Y given X: 𝑃(S | X, Y) = 𝑃(S | X), we recover covariate shift

where 𝑃(X | S = 1) ≠ 𝑃(X) and 𝑃(Y | X,S) = 𝑃(Y | X).

Note that covariate shift is only harmful when the model class is misspecified [13]. This issue

is typically addressed through importance-weighted empirical risk minimization–weighting

the training losses according to the ratio of the test and training input densities [40, 89]. In

such context, the additional assumption of 𝑃 ≪ �̃� is required so to obtain the weighted risk on

the training set to be equal to the risk on the test set. This assumption is therefore in contrast

with Def. 12, requiring for selection bias the support condition �̃� ≪ 𝑃.

More in general, selection bias necessitates both the support condition and the selection

condition with bounded
𝑑𝑃

𝑑�̃�
(𝑥𝑖 , 𝑦𝑖) ∀𝑖 ∈ [𝑛], which are stronger than the original definition of

covariate shift assuming only the change of marginal distribution 𝑝(X) and the invariance of

the class-posterior probability 𝑝(Y | X). As a result, there exist covariate shift scenarios that

cannot be attributed to selection bias when �̃� ≪ 𝑃 is not the case.

Generalized target shift In the literature, generalized target shift refers to the situation where

the prior probability 𝑝(Y) and the conditional distribution 𝑝(X | Y) both change across training

and test domains, however, with some invariance assumptions in the latent space [10, 41, 42].

Generalized target shift is a subcase of 𝜏 : 𝑋 × 𝑌⇝ 𝑋 ⊗ 𝜆 : 𝑋 × 𝑌⇝ 𝑌 corruption that can be

formulated as a corrupted experiment. Note that simplified sub-examples can also manifest as a

generalized target shift; however, it is important to avoid degenerating into the basic 𝜏 : 𝑋 ⇝ 𝑋

corruption, as it would violate the requirement of corrupting the label distribution.

Concept drift, concept shift, and sampling shift Concept drift refers to the situation

where data evolves over time, leading to different categorizations depending on the nature

of the change. Typically, concept drift between time point 𝑡0 and 𝑡1 is characterized by

𝑝𝑡0(X,Y) ≠ 𝑝𝑡1(X,Y) [51, 52, 53]. In our words, 𝑝𝑡1(X,Y) can be seen as a corrupted version

of 𝑝𝑡0(X,Y). Given its generality, this case can be associated with every corruption in our

framework; therefore, the most general correspondence is the 𝜏 : 𝑋 × 𝑌⇝ 𝑋 ⊗ 𝜆 : 𝑋 × 𝑌⇝ 𝑌

joint Markov kernel.

There are two types of concept drifts popular in the literature:

• Concept shift [54, 55, 56]: in this case, 𝑝(Y | X) changes over time, and such changes

can occur with or without changes on 𝑝(X), often referred to as concept shift; in our

framework, this is a subcase of 𝜏 : 𝑋 ×𝑌⇝ 𝑋 ⊗ 𝜆 : 𝑋 ×𝑌⇝ 𝑌 corruption. More details

in Tab. S1.

• Sampling shift [57, 55, 56]: here, 𝑝(X) changes over time while 𝑝(Y | X) remains invariant,

also known as virtual drift; in our framework, this is a subcase of 𝜏 : 𝑋 × 𝑌 ⇝ 𝑋 ⊗
𝜆 : 𝑋 ⇝ 𝑌 corruption. More details in Tab. S1.
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Table S1: Traditional taxonomies resume.

Corrupted Invariant Name in [16] DAG in [17] Ours References

at least one

among {𝜋𝑋 , 𝐹, 𝐸},
according to

compatibility

𝜋𝑌
concept shift

when Y → X

D

X Y

subcase of

𝜅 : 𝑋 ⇝ 𝑋

as sole attribute noise

[20, 21, 22, 23]

at least one

among {𝜋𝑌 , 𝐹, 𝐸},
according to

compatibility

𝜋𝑋
concept shift

when X → Y

D

X Y

subcase of

𝜆 : 𝑌⇝ 𝑌

as sole class-

conditional noise

[9, 24, 11, 12, 26, 23];

in general, [100, 101]

at least 𝜋𝑌 ,

causing 𝜋𝑋 or

𝐹 to change

𝐸

prior probability

shift when

Y → X

D

X Y

at least a 𝜆 : 𝑌⇝ 𝑌

subcase, at most

𝜅 : 𝑋 × 𝑌⇝ 𝑋

⊗
𝜆 : 𝑋 × 𝑌⇝ 𝑌

or label shift,

or class imbalance;

[35, 36, 37, 38, 102]

at least 𝜋𝑋 ,

causing 𝜋𝑌 or

𝐸 to change

𝐹
covariate shift

when X → Y

D

X Y

at least a 𝜅 : 𝑋 ⇝ 𝑋

subcase, at most

𝜅 : 𝑋 × 𝑌⇝ 𝑋

⊗
𝜆 : 𝑋 × 𝑌⇝ 𝑌

[13, 39, 40, 15]

However, in the literature, concept drift is also defined with more invariance assumptions. For

example, in Moreno-Torres et al. [16], they define concept drift as 𝑝(Y | X) changing while 𝑝(X)
remains invariant or 𝑝(X | Y) changing while 𝑝(Y) remains invariant. Similar to instance- and

label-dependent noise and covariate shift, they are examples of 𝜆 : 𝑋 × 𝑌⇝ 𝑌 corruption and

𝜏 : 𝑋 × 𝑌⇝ 𝑋 ⊗ 𝜆 : 𝑌⇝ 𝑌 corruption that involve more corrupted spaces at different time

points.

S2 Comparison with other taxonomies

We notice that most of the taxonomies available in the literature are based on the notion

of invariance, inducing taxonomies very different from ours. We here connect our work to

other categorization paradigms for distribution shifts, although without claiming it to be a

comprehensive review.

We divide taxonomies in two main groups: the traditional ones, focusing on identifying which

probability in the set {𝜋𝑌 ,𝜋𝑋 , 𝐸, 𝐹} is forced to be left invariant and which one is forced to

be corrupted [16], and the causal ones, where a causal graph structure is associated to the

corruption process [99] and hidden structures are possibly involved so that some latent feature

is left unchanged by the corruption [17, 19]. Notice that in none of the cited works the corrupted

distribution is assumed to have a specific form or to be “close enough” to the clean one. We do

not review these other cases, because too far from our point of view and objective.

Traditional and causal taxonomies Focusing on the first case, a complete traditional taxonomy

has four types of possible corruptions. Taking into account which marginal or conditional
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probability is forced to be corrupted, we obtain a finite number of corruption subcases of these

four macro-types. However, the different cases obtained may overlap, as it is schematically

shown in Tab. S1. The cases that have a clear correspondence with ours are the ones leaving

invariant a marginal distribution, generating simple noises. All the other cases cannot be

directly mapped into our taxonomy, so we explicitly write the range of corruption types covered

by them.

As for causal taxonomies, based on causal graphs, they are more difficult to describe in a unified

way since different applications lead to different notations. We then avoid doing so, and limit

ourselves to qualitatively compare them with our work.

A common trend is to identify the current space we live in with a variable D, the domain or

environment, possibly taking values in N. This variable is then included in the causal graph

indicating on what it is acting, as done in the examples in Tab. S1. In the case described

by Def. 7 we restrict it to take values in {0, 1}, the clean and corrupted environments. This

representation is again missing some our corruptions, since it is only possible to encode 𝑋 and

𝑌 changing across domains and not whether other environments influence the current one. The

shifts in Kull and Flach [17, Fig. 3] involving hidden variables (concept shift subcases) resemble

our idea of a “latent process” influencing the current environment, but still fail to cover all

the possible cross-domain influence in Fig. 1. An additional limitation of the causal approach

lies in the in the causal assumption itself; we are forced, in this setting, to only consider one

between 𝐸 and 𝐹 to be a valid representation of the generative process, while in our framework

we are not forced to make this choice. We although still use it in case it is available.

In both the described classes of taxonomies, it not natural nor simple to define a hierarchy of

corruptions. In particular, in the traditional taxonomy the specification of what is corrupted

leaves room for other components to be forced to be influenced, creating overlaps between

cases. As for composing them, a DAG representation of corruption model can facilitate their

chaining. Nevertheless, feasibility rules are rather complex and unclear to understand, given

the overlapping nature of the corruptions and identifiability problems for causal representations

[103].

S3 Bayesian inversion in category theory

In this section, we provide a more formal definition of the Bayesian inverse of a Markov kernel,

based on some existing results from category theory applied to Bayesian learning [104]. In

fact, Bayesian update is exactly kernel inversion. These results guarantee the valid and proper

utilization of the inverse kernel in the current paper. Before delving into the details, we

introduce relevant categorical concepts, establishing the necessary background to proceed. For

a comprehensive overview of category theory, we recommend interested readers to refer to

Mac Lane [105].

Categorical concepts To begin, let Mes be the category of measurable spaces with measurable

maps as morphisms, and Pol be the category of Polish spaces, i.e., separable metric spaces

for which a complete metric exists, with continuous maps as morphisms. The functor

ℬ : Pol→ Mes associates any Polish space to the measurable space with the same underlying

set equipped with the Borel 𝜎-algebra, and interprets continuous maps as measurable ones.

Measurable spaces in the range of ℬ are standard Borel spaces, which are important because the
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Table S2: Comparison of categorical concepts in Dahlqvist et al. [104] and probabilistic concepts

in this paper.

Categorical Probabilistic

Kleisli category of Giry monad G, 𝐾ℓ measurable spaces as objects and Markov kernels as arrows

arrows in category 1 ↓ 𝒦ℓ ℳ(𝑋,𝑌) where 𝑋 and 𝑌 have marginals 𝑝 and 𝑞, respectively

arrows in category 1 ↓ 𝐹 subset of the above ℳ(𝑋,𝑌) with

measure-preserving maps induced by identical kernels 𝛿

Kleisli composition ◦G chain composition ◦ in P1 with transitional kernels

𝛼𝑋
𝑌

: HomKrn(𝑋,−) → Γ(𝑋,−) product composition × in P2 with a kernel and a probability

regular conditional probabilities are known to exist in them, but not in general [106]. Therefore,

they will be used as the building block of the Krn category in the subsequent Bayesian inversion

theorem.

The Giry monad is the monad on a category of suitable spaces which sends each suitable space

𝑋 to the space of suitable probability measures on 𝑋. In this case, the set of suitable spaces

is the one of the Mes category induced by the functor ℬ. To define it more formally, we now

consider the triple (𝒫 , 𝜇, 𝛿):

• the functor 𝒫 is such that we assign to every space 𝑋 in Mes the set of all probability

measures on 𝑋, 𝒫(𝑋). This is equipped with the smallest 𝜎-algebra that makes the

evaluation function 𝑒𝑣𝐵 : 𝒫(𝑋) → [0, 1] = 𝑃 ↦→ 𝑃(𝐵) measurable, for 𝐵 a measurable

subset in 𝑋;

• the multiplication of the monad, 𝜇 : 𝒫2 ⇒ 𝒫, is defined by 𝜇𝑋(𝑄)(𝐵) =
∫
𝑞∈𝒫(𝑋) 𝑒𝑣𝐵(𝑞)𝑑𝑄;

• the unit of the monad, 𝛿 : 𝐼𝑑 ⇒ 𝒫, sends a point 𝑥 ∈ 𝑋 to the Dirac measure at 𝑥, 𝛿𝑥 .

This equips the endofunctor 𝒫 : Mes→ Mes into a monad, that is, the Giry monad G B (𝒫 , 𝜇, 𝛿)
on measurable spaces.

The Kleisli category of G, denoted by 𝒦ℓ , has the same objects as Mes, and the morphism

𝑓 : 𝑋 ⇝ 𝑌 in 𝒦ℓ is a kernel 𝑓 : 𝑋 → 𝒫(𝑌) in Mes. The Kleisli composition of kernel 𝑓 : 𝑋 ⇝ 𝑌

with 𝑔 : 𝑌 ⇝ 𝑍 is given by 𝑔 ◦G 𝑓 = 𝜇𝑍 ◦ 𝒫(𝑔) ◦ 𝑓 . The action of the functor 𝒫 on a kernel

results, by definition, in the push-forward operator 𝒫(𝑔)(·) B (·) ◦ 𝑔−1
, defined on a suitable

space of probabilities. Hence, ◦G is the same as the chain composition we defined in P1.

The Bayesian inversion theorem Dahlqvist et al. [104] investigates how and when the

Bayesian inversion of the Markov kernel is defined, both directly on the category of measurable

spaces, and indirectly by considering the associated linear operators (i.e., Markov transition,

see Çinlar [59]). Below, we only introduce the first result of the Bayesian inversion theorem,

given the focus of Markov kernels we have in the current paper, and then describe the

pseudo-inversion operation in P4 in a more formal way.

The category of Markov kernel considered here is the one of typed kernel. Their definition is

tied to a fixed probability 𝑝 on 𝑋 and a fixed probability 𝑞 on 𝑌, so that 𝑓 ◦G 𝑝 = 𝑞, instead of
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being characterized for every probability on 𝑋 and every reachable output. In general, one can

define Markov kernels as operators on the space of probabilities; that is not our interest, as we

tie the concept of corruption to a specific couple on the clean and corrupted distribution. This

remark is also crucial for understanding our notion of exhaustiveness in § S4.

The key object for building the inversion operation is the Krn category, similar to our notion of

space of Markov kernels ℳ(𝑋,𝑌), but with an equivalence relation acting on it. We describe

its construction in the following steps.

1. Let 𝐹 : Mes→ 𝒦ℓ be the functor embedding Mes into 𝒦ℓ which acts identically on spaces

and maps measurable arrows 𝑓 : 𝑋 → 𝑌 to Kleisli arrows 𝐹( 𝑓 ) = 𝛿𝑌 ◦ 𝑓 . This means

that 𝐹( 𝑓 ) only allows one possible jump at each 𝑥 in 𝑋, with 𝛿𝑌 an identical jump (i.e., a

deterministic kernel).

2. It further induces the category 1 ↓ 𝐹 of probabilities 𝑝 : 1 ⇝ 𝒫(𝑋), denoted by

(𝑋, 𝑝), and morphisms 𝑓 : (𝑋, 𝑝) ⇝𝛿 (𝑌, 𝑞) as degenerate arrows 𝐹( 𝑓 ) : 𝑋 ⇝ 𝑌 s.t.

𝑞 = 𝐹( 𝑓 ) ◦G 𝑝 = P( 𝑓 )(𝑝) = 𝑝 ◦ 𝑓 −1
. In more familiar terms, this is saying that 𝑞 is the

push-forward of 𝑝 along 𝑓 . 1 ↓ 𝐹 includes all measure-preserving maps induced by

degenerate arrows.

3. When the arrows are not degenerate, we obtain the supercategory 1 ↓ 𝒦ℓ with the same

objects. Specifically, in this category, an arrow from (𝑋, 𝑝) to (𝑌, 𝑞) is any Kleisli arrow

𝑓 : 𝑋 ⇝ 𝑌 s.t. 𝑞 = 𝑓 ◦G 𝑝, and the arrows are what we denoted as ℳ(𝑋,𝑌), where 𝑋 has

marginal probability 𝑝 and 𝑌 has marginal probability 𝑞.

4. Markov kernels cannot be inverted as they are, because of their non-singularity. Lemma 3

in Dahlqvist et al. [104] characterizes it by proving that for a kernel 𝑓 : (𝑋, 𝑝)⇝ (𝑌, 𝑞)
there are 𝑝-negligibly many points jumping to 𝑞-negligible sets.

Once the non-singularity is understood, we can define an equivalence relation on 1 ↓ 𝒦ℓ that

allows a well-posed definition of the inverse kernel.

Definition. For all objects (𝑋, 𝑝), (𝑌, 𝑞),𝑅(𝑋,𝑝),(𝑌,𝑞) is the smallest equivalence relation on𝐻𝑜𝑚
1↓𝒦ℓ (𝑋,𝑌)

such that

( 𝑓 , 𝑓 ′) ∈ 𝑅(𝑋,𝑝),(𝑌,𝑞) ⇔ 𝑓 = 𝑓 ′ 𝑝 − a.s.

They prove 𝑅 to be a congruence relation on 1 ↓ 𝒦ℓ in their Lemma 4. This congruence relation

allows us to define the quotient category, with proper morphisms.

Definition. The category Krn is the quotient category (1 ↓ 𝒦ℓ )/𝑅 .

Having defined the category, we have to build the functions that are going to consti-

tute the Bayesian inversion operator, i.e., a bĳection between HomKrn((𝑋, 𝑝), (𝑌, 𝑞)) and

HomKrn((𝑌, 𝑞), (𝑋, 𝑝)). There are two mappings between the Krn category and the space

of couplings associated to (𝑋, 𝑝), (𝑌, 𝑞). The first is equivalent to the product composition we

defined in P2 applied to a kernel (i.e. conditional probability) and a probability, and is formally

written as

𝛼𝑋𝑌 : HomKrn((𝑋, 𝑝), (𝑌, 𝑞)) → Γ((𝑋, 𝑝), (𝑌, 𝑞)) s.t. 𝛼𝑋𝑌 ( 𝑓 )(𝐵𝑋 × 𝐵𝑌) B
∫
𝑥∈𝐵𝑋

𝑓 (𝑥)(𝐵𝑌)𝑑𝑝 ,

with Γ((𝑋, 𝑝), (𝑌, 𝑞)) ⊂ 𝒫(𝑋 ×𝑌) the typed couplings associated to the marginals (𝑋, 𝑝), (𝑌, 𝑞).
The second is defined as its inverse operation, and it is decomposing a joint probability along a
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fixed marginal distribution, i.e.,

𝐷𝑋
𝑌 : Γ((𝑋, 𝑝), (𝑌, 𝑞)) → HomKrn((𝑋, 𝑝), (𝑌, 𝑞))

s.t. 𝐷𝑋
𝑌 (𝛾) B P(𝜋𝑌) ◦ 𝜋

†
𝑋 , 𝛾(𝐵𝑋 × 𝐵𝑌) B

∫
𝑥∈𝐵𝑋

𝐷𝑋
𝑌 (𝛾)(𝑥)(𝐵𝑌)𝑑𝑝 ,

with (·)†: adjoint operator. As one is the inverse of the other, they are both obviously bĳective

and the one-to-one correspondence between typed kernels and couplings is proved. Hence,

we formally define the Bayesian inverse as in the following:

Definition. The Bayesian inverse of a typed kernel 𝜅 from (𝑋, 𝑝) to (𝑌, 𝑞), is defined as

(·)† : 𝜅 ↦→ 𝜅† B
(
𝐷𝑌
𝑋 ◦ P(𝜋𝑌 × 𝜋𝑋) ◦ 𝛼𝑋𝑌

)
(𝜅) ,

with P(𝜋𝑌 × 𝜋𝑋) : Γ((𝑋, 𝑝), (𝑌, 𝑞)) → Γ((𝑌, 𝑞), (𝑋, 𝑝)) being the permutation map.

As the Bayesian inverse has been defined as a bĳection between HomKrn((𝑋, 𝑝), (𝑌, 𝑞)) and

HomKrn((𝑌, 𝑞), (𝑋, 𝑝)), it is always guaranteed to exist in this setting.

Proposition. The Bayesian inverse of a typed kernel 𝜅 from (𝑋, 𝑝) to (𝑌, 𝑞) is equivalently one of the

following objects:

1. 𝜅†
: (𝑌, 𝑞) → (𝑋, 𝑝) ∈ Krn when 𝜅 is seen as element of Krn, such that (𝜅† ◦G 𝜅) ◦G 𝑞 = 𝛿𝑌 ◦G 𝑞

and (𝜅 ◦ 𝜅†) ◦G 𝑝 = 𝛿𝑋 ◦G 𝑝 ;

2. 𝜅†
: 𝑌⇝ 𝑋 ∈ ℳ(𝑌, 𝑋)when𝜅 is seen as element ofℳ(𝑋,𝑌), such that (𝜅†◦G𝜅)◦G𝑞 ≡𝑅 𝛿𝑌◦G𝑞

and (𝜅 ◦G 𝜅†) ◦G 𝑝 ≡𝑅 𝛿𝑋 ◦G 𝑝 .

Here, 𝛿(·) indicates the identical kernel on the set (·), induced by the Dirac delta distribution.

Remark. We can understand the Bayesian inverse of a corruption kernel 𝜅 ∈ ℳ(𝑍, 𝑍) from

(𝑍,𝒵, 𝑃) to (𝑍,𝒵 , �̃�) that distorts �̃�(𝐴) =
∫
𝐴

∫
𝑍
𝜅(𝑧, 𝑑�̃�)𝑃(𝑑𝑧) ∀𝐴 ∈ 𝒵 as a Markov kernel

𝜅† ∈ ℳ(𝑍, 𝑍) satisfying∫
𝐵

𝜅(𝑧, 𝐴)𝑃(𝑑𝑧) =
∫
𝐴

𝜅†(�̃� , 𝐵) �̃�(𝑑�̃�) ∀𝐴 ∈ 𝒵, 𝐵 ∈ 𝒵.

This formulation extends the discrete Bayes’ rule 𝑃(�̃� | 𝑧)𝑃(𝑧) = 𝑃(𝑧 | �̃�)𝑃(�̃�) ∀𝑧, �̃� ∈ 𝑍. Hence,

in the discrete case, the Bayesian inverse always exists and can be expressed as

𝜅†(𝑧 | �̃�) B 𝑃(𝑧)𝜅(�̃� | 𝑧)
�̃�(�̃�)

for 𝑧, �̃� ∈ 𝑍with �̃�(�̃�) ≠ 0.

This formula ensures the uniqueness of 𝜅†
within the support of �̃�, as all components are

unique. However, outside the support when �̃� is zero, the uniqueness may not hold, requiring

a non-fixed value for �̃� ∈ 𝑍 where �̃�(�̃�) = 0.

In the continuous case, the Bayesian inverse may not exist. To ensure 𝜅† ∈ ℳ(𝑍, 𝑍) is well-

defined, it must satisfy the conditions of being a Markov kernel, as defined in Def. 1, where the

mapping �̃� → 𝜅†(�̃� , 𝐵) is 𝒵-measurable for every set 𝐵 ∈ 𝒵, and the mapping 𝐵 → 𝜅†(�̃� , 𝐵) is

a probability measure on (𝑍,𝒵) for every �̃� ∈ 𝑍, for the standard Borel space (𝑍,𝒵). Under this

condition, the Bayesian inverse always exists, and it is uniquely defined within the support of �̃�,

where uniqueness is represented by an equivalence class of kernels that are �̃�-a.s. equal.
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𝑍1

𝑍2 𝑍3

(a) Fork structure.

𝑍1

𝑍2

𝑍3

(b) Chain structure.

𝑍1

𝑍2 𝑍3

(c) Collider structure.

Figure S1: Possible non-degenerate relations among three probability spaces.

S4 Details on the exhaustiveness of the taxonomy

The definition of corruption that we give in Def. 7 is tight to the output and input distributions

𝑃 and �̃�. This, together with the fact that we use Markov kernels, makes the space of typed

kernels correspond to our space of corruptions.

Pairwise Markovian corruption As we noticed in § S1, Markov kernels are not the only

possibility for modeling corruption, but we proved that given a clean and corrupted space we

can always find a Markov kernel that connects the two distributions. In particular, we define the

operations 𝛼𝑋
𝑌

and 𝐷𝑋
𝑌

for typed kernels, where one is the inverse of the other by construction.

They are the operations representing the bĳection between the space of Markov kernels typed

for 𝑝, 𝑞 and the space of couplings with marginals 𝑝, 𝑞. Hence, they are proving that for each

couple of probability spaces, there exists a Markov kernel sending one into the other corresponding to a

possible associated coupling.

When the definition of corruption is directly made through Markov kernels, we call it a

Markovian corruption. These are, in categorical terms, all the arrows in the Krn category.

The reasoning above means that every pairwise Markovian corruption in the supervised

learning setting is described by our taxonomy. Other possibilities are, having more than two

spaces involved in the corruption process and having a non-stochastic mapping describing

the corruption process as it has been defined. We discuss them in the following, providing

examples.

Markovian corruption for more than two spaces When in the presence of three probability

spaces, we have only two possible corruption configurations. We represent them in Fig. S1,

where arrows represent non-trivial Markov kernels. We remark that we do not consider

the triangular structures as in Fig. S1a and c with the spaces 𝑍2 , 𝑍3 coupled in some way,

otherwise they would just be considered as a single (product) probability space, i.e. a pairwise

corruption.

The simplest case is Fig. S1b, in which the spaces influence each other in a chain fashion. This

is a clear subcase of our framework as we can integrate 𝑍2 by considering 𝜅𝑍1𝑍3
B 𝜅3 ◦ 𝜅2 ◦ 𝜅1.

We then obtain a pairwise corruption 𝜅𝑍1𝑍3
, but we would pay the price of losing information

about the role of the “latent” corruption process. To have a complete idea of how the chained

corruption works, we can additionally study it as an iterative process and analyze its single

components. This entire reasoning is true for a number of spaces 𝑍𝑖 , 𝑖 ∈ [𝑛] with 𝑛 > 3, and

well models several settings for dynamical learning, e.g. online corrupted learning or concept

drift over time [51, 107, 53].
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The second option is, they act as per the diagrams in Fig. S1a and Fig. S1c, i.e. a triangular

structure. In particular, case (a) reflects assumptions made in settings combining data from

different domains [68, 26, 108], where we get to observe different data distributions obtained

from the same clean one. They can be seen, in our framework, as a pairwise dependence

between 𝑍1 × 𝑍2 and 𝑍3, or 𝑍1 and 𝑍2 × 𝑍3. However, this formulation assumes some

coupling on 𝑍2 , 𝑍3, more complex than our originally assumed corruption. For now, we do

not investigate the consequences of this gap as changes of the corruption effect, leaving it for

future investigation. A similar idea can be stated for 𝑛 > 2 spaces in the Cartesian product

space, and for combinations of fork structures with fork structures via superposition.

S5 Proofs for Data Processing Equality results

We restate for clarity all the assumptions underlying the proofs.

A1 The loss function ℓ : 𝒫(𝑌) × 𝑌 → R≥0 associated with the learning problem (ℓ ,ℋ , 𝑃) is

proper and bounded.

A2 The br minimizer 𝑓 ∗ ∈ arg min 𝑓 E�̃�[ 𝑓 (X, Y)] belongs to the minimization space ℓ ◦ ℋ , i.e.

it minimizes also the associated Constrained br.

Recall that 𝜋𝑌 is a prior distribution on 𝑌, and the notation 𝜅X stands for the kernel 𝜅 evaluated

on the parameter X, e.g., 𝐸Y , 𝐹X, and 𝜅𝑥 B 𝜅X=𝑥 . The kernel 𝛿𝑍 denotes a kernel induced by

the Dirac delta measure from (𝑍,𝒵) to (𝑍,𝒵).

In the proofs we will use a continuous notation for measures on 𝑌, for the sake of simplicity

and homogeneity. However, notice that all the 𝜆 kernels are actually (parameterized) stochastic

matrices Λ = [Λ�̃�𝑦], where Λ�̃�𝑦 = 𝑝(Ỹ = �̃� | Y = 𝑦) for simple corruptions and Λ�̃�𝑦(𝑥) = 𝑝(Ỹ =

�̃� | Y = 𝑦,X = 𝑥) for dependent corruptions. Note that both 𝑦 and �̃� range in 𝑌, and thus they

are squared matrices. In Theorem 15 and Lemma S2, the kernel 𝜆 acting on the function ℓ ◦ ℋ
is actually the transpose of the stochastic matrix Λ:∑̃

𝑦∈𝑌
𝜆𝑥(𝑦, 𝑑�̃�) ℓ (ℎ(𝑥), �̃�) =

∑̃
𝑦∈𝑌

Λ⊤
�̃�𝑦(𝑥) ℓ �̃�(ℎ(𝑥)) = �(ℓ𝑦 ◦ ℎ)(𝑥) .

Below, Theorems 14 and 15 are proved based on the Lemmas concerning br changes under

dependent 𝑋 and 𝑌 corruptions, respectively.

Lemma S1 (br under 𝑋 corruption). Let A1 and A2 hold. Consider the learning problem (ℓ ,ℋ , 𝑃)
and 𝐸 : 𝑌 ⇝ 𝑋 its associated experiment such that 𝑃 = 𝜋𝑌 × 𝐸 for a suitable 𝜋𝑌 . Let 𝜏 ⊗ 𝛿𝑌 be a

corruption acting on this problem, with 𝜏 ∈ ℳ(𝑋 × 𝑌, 𝑋). Then, we obtain(
ℓ ◦ ℋ , (𝜋𝑌 × 𝐸) ◦ (𝜏 ⊗ 𝛿𝑌)

)
=

(
ℓ ◦ ℋ ,𝜋𝑌 ◦

(
(𝐸 ◦𝑋 𝜏) ⊗ 𝛿𝑌

) )
≡br

(
𝜏(ℓ ◦ ℋ),𝜋𝑌 × 𝐸

)
.

Moreover, if 𝜏 ∈ ℳ(𝑋, 𝑋), we have(
ℓ ◦ ℋ , (𝜋𝑌 × 𝐸) ◦ (𝜏 ⊗ 𝛿𝑌)

)
=

(
ℓ ◦ ℋ ,𝜋𝑌 ◦

(
(𝐸 ◦ 𝜏) ⊗ 𝛿𝑌

) )
≡br

(
𝜏(ℓ ◦ ℋ),𝜋𝑌 × 𝐸

)
.
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Proof. Let 𝐴 ∈ 𝒳 ×𝒴. By definition of all the objects involved, the action of 𝜏 ⊗ 𝛿𝑌 on 𝑃 is

�̃�(𝐴) =
∫
(�̃� ,�̃�)∈𝐴

∫
(𝑥,𝑦)∈𝑋×𝑌

𝜏𝑦(𝑥, 𝑑�̃�) 𝛿𝑦(𝑑�̃�)𝑃(𝑑𝑥𝑑𝑦)

=

∫
(�̃� ,�̃�)∈𝐴


∑
𝑦∈𝑌

(∫
𝑥∈𝑋

𝜏𝑦(𝑥, 𝑑�̃�)𝐸𝑦(𝑑𝑥)
)
𝛿𝑦(𝑑�̃�)𝜋𝑦


=

∫
(�̃� ,�̃�)∈𝐴


∑
𝑦∈𝑌

(𝐸 ◦𝑋 𝜏)𝑦(𝑑�̃�) 𝛿𝑦(𝑑�̃�)𝜋𝑦


=
[
𝜋𝑦 ◦

(
(𝐸 ◦𝑋 𝜏) ⊗ 𝛿𝑌

) ]
(𝐴) .

We can hence rewrite the risk w.r.t. �̃� as

E(X̃,Ỹ)∼𝜋𝑦◦[(𝐸◦𝑋𝜏)⊗𝛿𝑌]
[
ℓ (ℎX̃ , Ỹ))

]
=

∑
𝑦∈𝑌,�̃�∈𝑌

[∫
�̃�∈𝑋

ℓ (ℎ�̃� , �̃�)
(∫

𝑥∈𝑋
𝜏𝑦(𝑥, 𝑑�̃�)𝐸𝑦(𝑑𝑥)

)]
𝛿𝑦(𝑑�̃�)𝜋𝑦

=
∑
𝑦∈𝑌


∫
𝑥∈𝑋

©«
∫
�̃�∈𝑋

©«
∑̃
𝑦∈𝑌

𝛿𝑦(𝑑�̃�) ℓ (ℎ�̃� , �̃�)ª®¬ 𝜏𝑦(𝑥, 𝑑�̃�)ª®¬𝐸𝑦(𝑑𝑥)
 𝜋𝑦

=
∑
𝑦∈𝑌

[∫
𝑥∈𝑋

(∫
�̃�∈𝑋

(𝛿ℓ𝑦 ◦ ℎ)(�̃�) 𝜏𝑦(𝑥, 𝑑�̃�)
)
𝐸𝑦(𝑑𝑥)

]
𝜋𝑦

=
∑
𝑦∈𝑌

[∫
𝑥∈𝑋

[𝜏(𝛿ℓ𝑦 ◦ ℎ)](𝑥, 𝑦)𝐸𝑦(𝑑𝑥)
]
𝜋𝑦 (S1)

= E(X,Y)∼(𝜋𝑌×𝐸)
[ (
𝜏(𝛿ℓY ◦ ℎ)

)
(X,Y)

]
.

Let �̃�𝑦(𝑑�̃�) B (𝐸 ◦𝑋 𝜏)𝑦(𝑑�̃�). We have that the associated br is

min

ℎ∈ℋ
E(X̃,Ỹ)∼𝜋𝑌◦[(𝐸◦𝑋𝜏)⊗𝛿𝑌]

[
ℓ (ℎX̃ , Ỹ))

]
= min

ℎ∈ℋ
EỸ∼𝜋𝑌EX̃∼�̃�Ỹ

[
ℓ (ℎX̃ , Ỹ))

]
= brℓ◦ℋ [𝜋𝑌 ◦ (�̃� ⊗ 𝛿𝑌)] ,

min

ℎ∈ℋ
E(X,Y)∼(𝜋𝑌×𝐸)

[ (
𝜏(𝛿ℓY ◦ ℎ)

)
(X,Y)

]
= min

𝑓 ∈𝜏(ℓ◦ℋ)
E(X,Y)∼(𝜋𝑌×𝐸) [ 𝑓 (X,Y)]

= br𝜏(ℓ◦ℋ)[𝜋𝑌 × 𝐸] , (S2)

which are equal given the previous computations. We have defined and used in Eq. (S2) that

𝑓 (𝑥, 𝑦) B [𝜏(𝛿ℓ𝑦 ◦ ℎ)](𝑥, 𝑦), ℎ ∈ ℋ . Such functions are the ones populating the minimization

set 𝜏(ℓ ◦ ℋ), denoting that 𝜏 acts on the composition of the loss and model class while 𝛿 only

acts on ℓ and leaves it unchanged. If 𝜏 is simple, then the equations from Eq. (S1) lead to a

slightly different model class:

brℓ◦ℋ
[
𝜋𝑌 ◦

(
(𝐸 ◦ 𝜏) ⊗ 𝛿𝑌

) ]
= min

ℎ∈ℋ

∑
𝑦∈𝑌

[∫
𝑥∈𝑋

[𝜏(𝛿ℓ𝑦 ◦ ℎ)](𝑥)𝐸𝑦(𝑑𝑥)
]
𝜋𝑦

= min

𝑓 ∈𝜏(ℓ◦ℋ)

∑
𝑦∈𝑌

[∫
𝑥∈𝑋

𝑓 (𝑥, 𝑦)𝐸𝑦(𝑑𝑥)
]
𝜋𝑦 = br𝜏(ℓ◦ℋ)(𝜋𝑌 × 𝐸) .

□
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Theorem (br under 2-dependent 𝜏, simple 𝜆, Theorem 14). Let A1 and A2 hold. Consider the

learning problem (ℓ ,ℋ , 𝑃) and 𝐸 : 𝑌⇝ 𝑋 its associated experiment such that 𝑃 = 𝜋𝑌 ×𝐸 for a suitable

𝜋𝑌 . Let (𝜏 : 𝑋 × 𝑌⇝ 𝑋) ⊗ (𝜆 : 𝑌⇝ 𝑌) be a corruption acting on this problem, then, we obtain(
ℓ ◦ ℋ , (𝜋𝑌 × 𝐸) ◦ (𝜏 ⊗ 𝜆)

)
=

(
ℓ ◦ ℋ ,𝜋𝑌 ◦

(
(𝐸 ◦𝑋 𝜏) ⊗ 𝜆

) )
≡br

(
𝜏(𝜆ℓ ◦ ℋ),𝜋𝑌 × 𝐸

)
.

The functions contained in the new minimization set are defined as

𝜏(𝜆ℓ ◦ ℋ) B {(𝑥, 𝑦) ↦→ [𝜏(𝜆ℓ𝑦 ◦ ℎ)](𝑥, 𝑦), ℎ ∈ ℋ} .

Proof. With this corruption formulation, we can replicate the proof of Lemma S1 up to Eq. (S1)

by simply plugging in 𝜆 instead of 𝛿𝑌 . Therefore, we obtain the thesis. □

We remark that in this case �̃� ≠ 𝜋𝑌 × �̃� with �̃�𝑦(𝑑�̃�) B (𝐸 ◦𝑋 𝜏)𝑦(𝑑�̃�), i.e., the corrupted

experiment is not given by the sole action of 𝜏, but also by the influence of 𝜆. That is clarified

further by corruption formula �̃� = 𝜋𝑦 ◦ [(𝐸 ◦𝑋 𝜏) ⊗ 𝜆]. We conclude that, in this more general

case, it does not make sense to distinguish the effect of corruption on 𝐸 and 𝜋.

Lemma S2 (br under 𝑌 corruption). Let A1 and A2 hold. Consider the learning problem (ℓ ,ℋ , 𝑃)
and 𝐹 : 𝑋 ⇝ 𝑌 its associated posterior such that 𝑃 = 𝜋𝑋 × 𝐹 for a suitable 𝜋𝑋 . Let 𝛿𝑋 ⊗ 𝜆 be a

corruption acting on this problem, with 𝜆 ∈ ℳ(𝑋 × 𝑌,𝑌). Then, we obtain(
ℓ ◦ ℋ , (𝜋𝑋 × 𝐹) ◦ (𝛿𝑋 ⊗ 𝜆)

)
=

(
ℓ ◦ ℋ ,𝜋𝑋 ◦

(
𝛿𝑋 ⊗ (𝐹 ◦𝑌 𝜆)

) )
≡br

(
𝜆ℓ ◦ ℋ ,𝜋𝑋 × 𝐹

)
.

Moreover, if 𝜆 ∈ ℳ(𝑌,𝑌), we have(
ℓ ◦ ℋ , (𝜋𝑋 × 𝐹) ◦ (𝛿𝑋 ⊗ 𝜆)

)
=

(
ℓ ◦ ℋ ,𝜋𝑋 ◦

(
𝛿𝑋 ⊗ (𝐹 ◦ 𝜆)

) )
≡br

(
𝜆ℓ ◦ ℋ ,𝜋𝑋 × 𝐹

)
.

Proof. Let 𝐴 ∈ 𝒳 ×𝒴. By definition of all the objects involved, the action of 𝜏 ⊗ 𝛿𝑌 on 𝑃 is

�̃�(𝐴) =
∫
(�̃� ,�̃�)∈𝐴

∫
(𝑥,𝑦)∈𝑋×𝑌

𝛿𝑥(𝑑�̃�)𝜆𝑥(𝑦, 𝑑�̃�)𝑃(𝑑𝑥𝑑𝑦)

=

∫
(�̃� ,�̃�)∈𝐴


∫
𝑥∈𝑋

©«
∑
𝑦∈𝑌

𝜆𝑥(𝑦, 𝑑�̃�) 𝐹𝑥(𝑑𝑦)ª®¬ 𝛿𝑥(𝑑�̃�)𝜋(𝑑𝑥)


=

∫
(�̃� ,�̃�)∈𝐴

[∫
𝑥∈𝑋

(𝐹 ◦𝑌 𝜆)𝑥(𝑑�̃�) 𝛿𝑥(𝑑�̃�)𝜋𝑥(𝑑𝑥)
]

=
[
𝜋𝑥 ◦

(
(𝐹 ◦𝑌 𝜆) ⊗ 𝛿𝑋

) ]
(𝐴) .

43



We can hence rewrite the risk w.r.t. �̃� as

E(X̃,Ỹ)∼𝜋𝑥◦[(𝐹◦𝑌𝜆)⊗𝛿𝑋 ]
[
ℓ (ℎX̃ , Ỹ))

]
=

∫
𝑥∈𝑋,�̃�∈𝑋


∑̃
𝑦∈𝑌

ℓ (ℎ�̃� , �̃�) ©«
∑
𝑦∈𝑌

𝜆(𝑥, 𝑦, 𝑑�̃�) 𝐹(𝑥, 𝑑𝑦)ª®¬
 𝛿(𝑥, 𝑑�̃�)𝜋(𝑑𝑥)

=

∫
𝑥∈𝑋,�̃�∈𝑋


∑
𝑦∈𝑌

©«
∑̃
𝑦∈𝑌

ℓ (ℎ�̃� , �̃�)𝜆(𝑥, 𝑦, 𝑑�̃�)ª®¬ 𝐹(𝑥, 𝑑𝑦)
 𝛿(𝑥, 𝑑�̃�)𝜋(𝑑𝑥)

=

∫
𝑥∈𝑋


∑
𝑦∈𝑌

( ∫
�̃�∈𝑋

(𝜆ℓ )(ℎ�̃� , 𝑥, 𝑦)𝛿(𝑥, 𝑑�̃�)
)
𝐹(𝑥, 𝑑𝑦)

 𝜋(𝑑𝑥)
=

∫
𝑥∈𝑋


∑
𝑦∈𝑌

(
(𝜆ℓ )(ℎ𝑥 , 𝑥, 𝑦)

)
𝐹(𝑥, 𝑑𝑦)

 𝜋(𝑑𝑥) (S3)

= E(X,Y)∼(𝜋𝑌×𝐸) [(𝜆ℓ )(ℎX ,X,Y)] = E(X,Y)∼(𝜋𝑌×𝐸)
[
(𝜆ℓ(X,Y) ◦ ℎ)(X)

]
.

Similarly to the proof provided for Lemma S1, we can switch to br and obtain

brℓ◦ℋ [𝜋𝑋 ◦
(
(𝐹 ◦𝑌 𝜆) ⊗ 𝛿𝑋

)
] = br𝜆ℓ◦ℋ (𝜋𝑋 × 𝐹) ,

with functions 𝜆ℓ (ℎ𝑥 , 𝑥, 𝑦) = (𝜆ℓ(𝑥,𝑦) ◦ ℎ)(𝑥) ∈ 𝜆ℓ ◦ ℋ . If 𝜆 is simple, then Eq. (S3) leads to a

simpler model class:

brℓ◦ℋ [𝜋𝑋 ◦
(
(𝐹 ◦ 𝜆) ⊗ 𝛿𝑋

)
] = min

ℎ∈ℋ

∫
𝑥∈𝑋


∑
𝑦∈𝑌

(𝜆ℓ )(ℎ𝑥 , 𝑦)𝐹(𝑥, 𝑑𝑦)
 𝜋(𝑑𝑥)

= min

𝑓 ∈𝜆(ℓ◦ℋ)

∫
𝑥∈𝑋


∑
𝑦∈𝑌

𝑓 (𝑥, 𝑦)𝐹(𝑥, 𝑑𝑦)
 𝜋(𝑑𝑥) = br𝜆(ℓ◦ℋ)(𝜋𝑋 × 𝐹) .

□

Theorem (br under simple 𝜏, 2-dependent 𝜆, Theorem 15). Let A1 and A2 hold. Consider the

learning problem (ℓ ,ℋ , 𝑃) and 𝐹 : 𝑋 ⇝ 𝑌 its associated posterior such that 𝑃 = 𝜋𝑋 × 𝐹 for a suitable

𝜋𝑋 . Let (𝜏 : 𝑋 ⇝ 𝑋) ⊗ (𝜆 : 𝑋 × 𝑌⇝ 𝑌) be a corruption acting on this problem, then, we obtain(
ℓ ◦ ℋ , (𝜋𝑋 × 𝐹) ◦ (𝜏 ⊗ 𝜆)

)
=

(
ℓ ◦ ℋ ,𝜋𝑋 ◦

(
𝜏 ⊗ (𝐹 ◦𝑌 𝜆)

) )
≡br

(
𝜏(𝜆ℓ ◦ ℋ),𝜋𝑋 × 𝐹

)
.

The functions contained in the new minimization set are defined as

𝜏(𝜆ℓ ◦ ℋ) B {(𝑥, 𝑦) ↦→ [𝜏(𝜆ℓ(𝑥,𝑦) ◦ ℎ)](𝑥), ℎ ∈ ℋ} .

Proof. With this corruption formulation, we can replicate the proof of Lemma S2 up to Eq. (S3)

by simply plugging in 𝜏 instead of 𝛿𝑥 . Therefore, we obtain the thesis. □

Theorem (br under a 1-dependent and a 2-dependent, Theorem 16). Let A1 and A2 hold. Consider

the clean learning problem (ℓ ,ℋ , 𝑃), 𝐸 : 𝑌⇝ 𝑋 its associated experiment such that 𝑃 = 𝜋𝑌 × 𝐸 for a

suitable 𝜋𝑌 , and 𝐹 : 𝑋 ⇝ 𝑌 its associated posterior such that 𝑃 = 𝜋𝑋 × 𝐹 for a suitable 𝜋𝑋 .
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1. Let (𝜏 : 𝑌⇝ 𝑋) ⊗ (𝜆 : 𝑋 × 𝑌⇝ 𝑌) be a corruption acting on the problem, then, we obtain(
ℓ ◦ ℋ , (𝜋𝑌 × 𝐸) ◦ (𝜏 ⊗ 𝜆)

)
=

(
ℓ ◦ ℋ ,𝜋𝑌 ◦

(
𝜏 ⊗ (𝐸 ◦𝑋 𝜆)

) )
≡br

(
𝜏(𝜆ℓ ◦ ℋ),𝜋𝑌 × 𝐸

)
.

The functions contained in the new minimization set are defined as

𝜏(𝜆ℓ ◦ ℋ){(𝑥, 𝑦) ↦→ 𝜏[𝜆ℓ(𝑥,𝑦) ◦ ℎ](𝑦), ℎ ∈ ℋ} .

2. Let (𝜏 : 𝑋 × 𝑌⇝ 𝑋) ⊗ (𝜆 : 𝑋 ⇝ 𝑌) be a corruption acting on the problem, then, we obtain(
ℓ ◦ ℋ , (𝜋𝑋 × 𝐹) ◦ (𝜏 ⊗ 𝜆)

)
=

(
ℓ ◦ ℋ ,𝜋𝑋 ◦

(
(𝐹 ◦𝑌 𝜏) ⊗ 𝜆

) )
≡br

(
𝜏(𝜆ℓ ◦ ℋ),𝜋𝑋 × 𝐹

)
.

The functions contained in the new minimization set are defined as

𝜏(𝜆ℓ ◦ ℋ){(𝑥, 𝑦) ↦→ 𝜏[𝜆ℓ𝑥 ◦ ℎ](𝑥, 𝑦), ℎ ∈ ℋ} .

Proof. Consider point 1 and let 𝐴 ∈ 𝒳 ×𝒴. By definition of all the objects involved, the action

of 𝜏 ⊗ 𝜆 on 𝑃 is

�̃�(𝐴) =
∫
(�̃� ,�̃�)∈𝐴


∑
𝑦∈𝑌

(∫
𝑥∈𝑋

𝜆𝑦(𝑥, 𝑑�̃�) 𝐸𝑦(𝑑𝑥)
)
𝜏(𝑦, 𝑑�̃�)𝜋𝑦


=

∫
(�̃� ,�̃�)∈𝐴


∑
𝑦∈𝑌

(𝐸 ◦𝑋 𝜆)(𝑦, 𝑑�̃�) 𝜏(𝑦, 𝑑�̃�)𝜋𝑦


=

∫
(�̃� ,�̃�)∈𝐴


∑
𝑦∈𝑌

(
𝜏 ⊗ (𝐸 ◦𝑋 𝜆)

)
(𝑦, 𝑑�̃�, 𝑑�̃�)𝜋𝑦

 =
[
𝜋𝑌 ×

(
𝜏 ⊗ (𝐸 ◦𝑋 𝜆)

) ]
(𝐴) .

We can then write the associated risk as

E(X̃,Ỹ)∼𝜋𝑌×
(
𝜏⊗(𝐸◦𝑋𝜆)

) [ℓ (ℎX̃ , Ỹ)] =
∑

𝑦∈𝑌,�̃�∈𝑌

[∫
�̃�∈𝑋

ℓ (ℎ�̃� , �̃�)
(∫

𝑥∈𝑋
𝜆(𝑥, 𝑦, 𝑑�̃�)𝐸𝑦(𝑑𝑥)

)]
𝜏(𝑦, 𝑑�̃�)𝜋𝑦

=
∑
𝑦∈𝑌


∫
𝑥∈𝑋

©«
∫
�̃�∈𝑋

©«
∑̃
𝑦∈𝑌

𝜆(𝑥, 𝑦, 𝑑�̃�) ℓ (ℎ�̃� , �̃�)ª®¬ 𝜏(𝑦, 𝑑�̃�)ª®¬𝐸𝑦(𝑑𝑥)
 𝜋𝑦

=
∑
𝑦∈𝑌

[∫
𝑥∈𝑋

(∫
�̃�∈𝑋

(𝜆ℓ(𝑥,𝑦) ◦ ℎ)(�̃�) 𝜏(𝑦, 𝑑�̃�)
)
𝐸𝑦(𝑑𝑥)

]
𝜋𝑦

=
∑
𝑦∈𝑌

[∫
𝑥∈𝑋

[𝜏(𝜆ℓ(𝑥,𝑦) ◦ ℎ)](𝑦)𝐸𝑦(𝑑𝑥)
]
𝜋𝑦

= E(X,Y)∼(𝜋𝑌×𝐸)
[ (
𝜏(𝜆ℓ(X,Y) ◦ ℎ)

)
(Y)

]
,

which proves the thesis when minimizing over ℎ ∈ ℋ . For proving point 2, we first rewrite the

action of 𝜏 ⊗ 𝜆 on 𝑃 as

�̃�(𝐴) =
∫
(�̃� ,�̃�)∈𝐴


∫
𝑥∈𝑋

𝜆(𝑥, 𝑑�̃�) ©«
∑
𝑦∈𝑌

𝜏(𝑥, 𝑦, 𝑑�̃�) 𝐹(𝑥, 𝑑𝑦)ª®¬𝜋(𝑑𝑥)


=

∫
(�̃� ,�̃�)∈𝐴

[∫
𝑥∈𝑋

𝜆(𝑥, 𝑑�̃�) (𝐹 ◦𝑌 𝜏)(𝑥, 𝑑�̃�)𝜋(𝑑𝑥)
]
=
[
𝜋𝑋 ×

(
𝜆 ⊗ (𝐹 ◦𝑌 𝜏)

) ]
(𝐴) ,
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and repeat a similar argument but for the 𝐹 kernel. We find a minimization space of functions

𝑓 (𝑥, 𝑦) B 𝜏[𝜆ℓ𝑥 ◦ ℎ](𝑥, 𝑦). Thus, we obtain the thesis. □

Corollary (br under 1-dependent 𝜏 and 𝜆, Corollary 17). Let A1 and A2 hold. Consider the

clean learning problem (ℓ ,ℋ , 𝑃), 𝐸 : 𝑌 ⇝ 𝑋 its associated experiment such that 𝑃 = 𝜋𝑌 × 𝐸 for a

suitable 𝜋𝑌 , and 𝐹 : 𝑋 ⇝ 𝑌 its associated posterior such that 𝑃 = 𝜋𝑋 × 𝐹 for a suitable 𝜋𝑋 . Let

(𝜏 : 𝑌⇝ 𝑋) ⊗ (𝜆 : 𝑋 ⇝ 𝑌) be a corruption acting on the problem, then, we obtain(
ℓ ◦ ℋ , (𝜋𝑌 × 𝐸) ◦ (𝜏 ⊗ 𝜆)

)
=

(
ℓ ◦ ℋ ,𝜋𝑌 ◦

(
𝜏 ⊗ (𝐸 ◦ 𝜆)

) )
≡br

(
𝜏(𝜆ℓ ◦ ℋ),𝜋𝑌 × 𝐸

)
.

or, equivalently,(
ℓ ◦ ℋ , (𝜋𝑋 × 𝐹) ◦ (𝜏 ⊗ 𝜆)

)
=

(
ℓ ◦ ℋ ,𝜋𝑋 ◦

(
(𝐹 ◦ 𝜏) ⊗ 𝜆

) )
≡br

(
𝜏(𝜆ℓ ◦ ℋ),𝜋𝑋 × 𝐹

)
.

The functions contained in the new minimization set are defined as

𝜏(𝜆ℓ ◦ ℋ) B {(𝑥, 𝑦) ↦→ [𝜏(𝜆ℓ𝑥 ◦ ℎ)](𝑦), ℎ ∈ ℋ} .

Proof. We can replicate the proof of Theorem 16 by simply substituting 𝜆(𝑥, 𝑑�̃�) in place of

𝜆(𝑥, 𝑦, 𝑑�̃�) in the first point, and 𝜏(𝑦, 𝑑�̃�) for 𝜏(𝑥, 𝑦, 𝑑�̃�) in the second point. We then in both

cases obtain functions 𝑓 (𝑥, 𝑦) B 𝜏[(𝜆ℓ )𝑥 ◦ ℎ](𝑦), i.e. comparing a point 𝑥 with a kernel on 𝒫(𝑋)
parameterized by 𝑦. Therefore, we obtain the thesis. □

Theorem (br under 2-dependent 𝜅 and 𝜆, Theorem 18). Let A1 and A2 hold. Consider the clean

learning problem (ℓ ,ℋ , 𝑃), and let (𝜏 : 𝑋 × 𝑌⇝ 𝑋) ⊗ (𝜆 : 𝑋 × 𝑌⇝ 𝑌) be a corruption acting on

the problem. Then:

1. the action of such corruption on the joint probability𝑃 is equivalent to the one of the non-decomposed

joint corruption;

2. the action on the minimization set ℓ ◦ ℋ induces the following br-equivalence(
ℓ ,ℋ , 𝑃 ◦ (𝜏 ⊗ 𝜆)

)
≡br

(
𝜏(𝜆ℓ ◦ ℋ), 𝑃

)
;

3. the functions contained in the new minimization set are defined as

𝜏(𝜆ℓ ◦ ℋ) B {(𝑥, 𝑦) ↦→ [𝜏(𝜆ℓ(𝑥,𝑦) ◦ ℎ)](𝑥, 𝑦), ℎ ∈ ℋ} .

Proof. Let 𝐴 ∈ 𝒳 ×𝒴. By definition of all the objects involved, the action of 𝜏 ⊗ 𝜆 on 𝑃 is

�̃�(𝐴) =
∫
(�̃� ,�̃�)∈𝐴


∑
𝑦∈𝑌

(∫
𝑥∈𝑋

𝜏𝑦(𝑥, 𝑑�̃�)𝜆𝑥(𝑦, 𝑑�̃�)𝐸𝑦(𝑑𝑥)
)
𝜋𝑦


=

∫
(�̃� ,�̃�)∈𝐴


∫
𝑥∈𝑋

©«
∑
𝑦∈𝑌

𝜏𝑦(𝑥, 𝑑�̃�)𝜆𝑥(𝑦, 𝑑�̃�) 𝐹𝑥(𝑑𝑦)ª®¬𝜋(𝑑𝑥)
 .

In both the formulations above, obtained by factorizing the joint probability 𝑃 in two different

ways, we cannot isolate the action of one between 𝜆 and 𝜏 on 𝐹 or 𝐸. That is, because of the
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dependence of 𝜆 and 𝜏 on the couple (𝑥, 𝑦), and because the action of a kernel on a probability

via a combination of P1, 2 and 4 requires sequential integration. This concludes point 1.

As for point 2, we now want to consider the action on functions. This uses integration w.r.t.

the corrupted variables (�̃� , �̃�), and therefore allows sequential integration. We have that the

associate risk is equal to

E(X̃,Ỹ)∼�̃�[ℓ (ℎX̃ , Ỹ)] =
∫
�̃�∈𝑋,�̃�∈𝑌

ℓ (ℎ�̃� , �̃�)
[∫

𝑥∈𝑋,𝑦∈𝑌
𝜏(𝑥, 𝑦, 𝑑�̃�)𝜆(𝑥, 𝑦, 𝑑�̃�)𝑃(𝑑𝑥𝑑𝑦)

]
(S4)

=

∫
�̃�∈𝑋,�̃�∈𝑌

ℓ (ℎ�̃� , �̃�)

∑
𝑦∈𝑌

(∫
𝑥∈𝑋

𝜏(𝑥, 𝑦, 𝑑�̃�)𝜆(𝑥, 𝑦, 𝑑�̃�)𝐸𝑦(𝑑𝑥)
)
𝜋𝑦


=
∑
𝑦∈𝑌

[∫
𝑥∈𝑋

(∫
�̃�∈𝑋,�̃�∈𝑌

ℓ (ℎ�̃� , �̃�)𝜏(𝑥, 𝑦, 𝑑�̃�)𝜆(𝑥, 𝑦, 𝑑�̃�)𝐸𝑦(𝑑𝑥)
)]

𝜋𝑦

=
∑
𝑦∈𝑌


∫
𝑥∈𝑋

©«
∫
�̃�∈𝑋

©«
∑̃
𝑦∈𝑌

ℓ (ℎ�̃� , �̃�)𝜆(𝑥, 𝑦, 𝑑�̃�)ª®¬ 𝜏(𝑥, 𝑦, 𝑑�̃�)𝐸𝑦(𝑑𝑥)ª®¬
 𝜋𝑦

=
∑
𝑦∈𝑌

[∫
𝑥∈𝑋

(∫
�̃�∈𝑋

𝜆ℓ (ℎ�̃� , 𝑥, 𝑦) 𝜏(𝑥, 𝑦, 𝑑�̃�)𝐸𝑦(𝑑𝑥)
)]

𝜋𝑦

=
∑
𝑦∈𝑌

[∫
𝑥∈𝑋

𝜏[𝜆ℓ(𝑥,𝑦) ◦ ℎ](𝑥, 𝑦)𝐸𝑦(𝑑𝑥)
]
𝜋𝑦 (S5)

= E(X,Y)∼(𝜋𝑌×𝐸)
[ (
𝜏(𝜆ℓ(X,Y) ◦ ℎ)

)
(X,Y)

]
.

Following the same reasoning, we can also write

E(X̃,Ỹ)∼�̃�[ℓ (ℎX̃ , Ỹ)] = E(X,Y)∼(𝜋𝑋×𝐹)
[ (
𝜏(𝜆ℓ(X,Y) ◦ ℎ)

)
(X,Y)

]
.

We prove point 2 and 3 minimizing both the obtained risk equalities w.r.t. ℎ ∈ ℋ . □

S6 Proofs for cl and gcl

In this section, we give the proof of the results stated in § 5. In addition to the assumptions A1

and 2 stated for proving the br theorems (§ S5), we assume here:

A3 There exist a loss function ℓ̃ such that 𝑓 ∗ = ℓ̃ ◦ ℎ for some model of interest ℎ ∈ ℋ , and

that satisfies the equality 𝜅†(ℓ ◦ ℎ) = ℓ̃ ◦ ℎ.

Here A3 is restated for a general model ℎ; in the main, we directly assume it to be the corrupted

minimum, since ultimately our goal is to apply the result to such model.

Restated for a general ℎ ∈ ℋ , we are finding the following representation of the corrupted

minimization set:

𝜅†(ℓ ◦ ℋ) = {ℓ̃ℎ ◦ ℎ | ℎ ∈ ℋ} ,
if assuming A3 for every ℓ̃ℎ .

Theorem. Let (ℓ ,ℋ , 𝑃) be a clean learning problem and (𝜅†(ℓ ◦ ℋ), 𝑃 ◦ 𝜅) its associated corrupted

one. Let 𝜅† = 𝜏 ⊗ 𝜆 be the joint cleaning kernel reversing 𝜅, such that assumptions A1 and 2 hold for

47



the said problems. Hence, provided that ℓ𝜉 is a function in 𝐿0

(
𝒫(𝑌), 𝜏#ℎ̃∗(𝜉)

)
, with 𝜉 being either �̃� or

�̃� depending on the case, we have:

1. Let 𝜅† = 𝛿𝑋 ⊗ 𝜆. When 𝜆 ∈ ℳ(𝑌,𝑌), we have

ℓ̃ (ℎ(�̃�), �̃�) B (𝜆ℓ ) (ℎ(�̃�), �̃�) ∀ (�̃� , �̃�) ∈ 𝑋 × 𝑌 ,

while when ℳ(𝑋 × 𝑌,𝑌) we have

ℓ̃ (ℎ(�̃�), �̃� , �̃�) B (𝜆ℓ ) (ℎ(�̃�), �̃� , �̃�) ∀ (�̃� , �̃�) ∈ 𝑋 × 𝑌 .

2. When A3 holds for 𝜅†
, and it is of the form (𝜏 : 𝑋 ⇝ 𝑋) ⊗ (𝜆 : 𝑌⇝ 𝑌), or (𝜏 : 𝑋 ×𝑌⇝ 𝑋) ⊗

(𝜆 : 𝑌⇝ 𝑌), or (𝜏 : 𝑋 ⇝ 𝑋) ⊗ (𝜆 : 𝑋 × 𝑌⇝ 𝑌), we have

ℓ̃ (ℎ, �̃�, �̃�) B Eu∼(𝜏#ℎ)(�̃�)[𝜆ℓ (u, �̃�)] ∀ (�̃� , �̃�) ∈ 𝑋 × 𝑌 .

For the cases that involve a 2-dependent corruption, for the former 𝜅†
factorization we have

𝜆(ℓ ) = 𝜆�̃�(ℓ ) – inducing 𝜆ℓ (u, �̃� , �̃�), while we get (𝜏#ℎ)(�̃�) = (𝜏#ℎ)(�̃� , �̃�) for the latter.

3. When A3 holds for 𝜅†
, and it is of the form (𝜏 : 𝑌⇝ 𝑋) ⊗ (𝜆 : 𝑋 ⇝ 𝑌), we have

ℓ̃ (ℎ, �̃�, �̃�) B Eu∼(𝜏#ℎ)(�̃�)[𝜆ℓ (u, �̃�)] ∀ (�̃� , �̃�) ∈ 𝑋 × 𝑌 .

4. When A3 holds for 𝜅†
, and it is of the form (𝜏 : 𝑌⇝ 𝑋) ⊗ (𝜆 : 𝑋×𝑌⇝ 𝑌), or (𝜏 : 𝑋×𝑌⇝ 𝑋)

⊗ (𝜆 : 𝑋 ⇝ 𝑌), we respectively have

ℓ̃ (ℎ, �̃�, �̃�) B Eu∼(𝜏#ℎ)(�̃�)[𝜆ℓ (u, �̃� , �̃�)] ∀ (�̃� , �̃�) ∈ 𝑋 × 𝑌 ;

ℓ̃ (ℎ, �̃�, �̃�) B Eu∼(𝜏#ℎ)(�̃� ,�̃�)[𝜆ℓ (u, �̃�)] ∀ (�̃� , �̃�) ∈ 𝑋 × 𝑌 .

5. When A3 holds for 𝜅†
, and it is of the form (𝜏 : 𝑋 × 𝑌⇝ 𝑋) ⊗ (𝜆 : 𝑋 × 𝑌⇝ 𝑌), we have

ℓ̃ (ℎ, �̃�, �̃�) B Eu∼(𝜏#ℎ)(�̃� ,�̃�)[𝜆ℓ (u, �̃� , �̃�)] ∀ (�̃� , �̃�) ∈ 𝑋 × 𝑌 .

Proof. Given assumption A3, we can write for a general model in the clean model class:

ℓ̃ (ℎ(�̃�), �̃�) =
∑
𝑦∈𝑌

∫
𝑥∈𝑋

ℓ (ℎ(𝑥), 𝑦)𝜅†(�̃� , �̃� , 𝑑𝑥𝑑𝑦) =
∑
𝑦∈𝑌

∫
𝑥∈𝑋

ℓ (ℎ(𝑥), 𝑦) (𝜏 ⊗ 𝜆)(�̃� , �̃� , 𝑑𝑥𝑑𝑦) .

Consider the 𝜅†
from point 1. They act on ℓ ◦ ℎ as

ℓ̃ (ℎ(�̃�), �̃� , �̃�) =
∑
𝑦∈𝑌

∫
𝑥∈𝑋

ℓ (ℎ(𝑥), 𝑦) 𝛿(�̃� , 𝑑𝑥)𝜆(�̃� , �̃� , 𝑑𝑦) =
∫
𝑥∈𝑋

(𝜆ℓ )(ℎ(𝑥), �̃� , �̃�) 𝛿(�̃� , 𝑑𝑥) = (𝜆ℓ )(ℎ(�̃�), �̃� , �̃�) .

Hence, the case 𝜆(�̃� , �̃� , 𝑑𝑦) = 𝜆�̃�(�̃� , 𝑑𝑦) and its subcase 𝜆(�̃� , 𝑑𝑦) combined with an identity

kernel on 𝑋 do not change the hypothesis function.
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For the more complex cases in point 2, 𝜏(�̃� , 𝑑𝑥) ≠ 𝛿𝑥(𝑑𝑥), we have:

ℓ̃ (ℎ, �̃�, �̃�) =
∑
𝑦∈𝑌

∫
𝑥∈𝑋

ℓ (ℎ(𝑥), 𝑦) 𝜏(�̃� , 𝑑𝑥)𝜆(�̃� , �̃� , 𝑑𝑦)

=
∑
𝑦∈𝑌

∫
𝑥∈ℎ(𝑋)

ℓ (𝑢, 𝑦) 𝜏(�̃� , (ℎ)−1(𝑑𝑢))𝜆(�̃� , �̃� , 𝑑𝑦) =
∫
𝑥∈ℎ(𝑋)

(𝜆ℓ )�̃�(𝑢, �̃�) 𝜏(�̃� , (ℎ)−1(𝑑𝑢)) ,

(S6)

where 𝑢 = 𝑢(𝑑𝑦) ∈ 𝒫(𝑌). The following equality for the expectation of 𝑢, the image measure of

𝜏 through ℎ, and the kernel chain composition holds:

Eu∼𝜏(�̃� ,(ℎ)−1(·))[u] =
∫
𝑥∈ ℎ̃∗(𝑋)

𝑢 𝜏(�̃� , (ℎ)−1(𝑑𝑢)) = (𝜏#ℎ)(�̃�) ∈ 𝒫(𝑌) ,

that can be verified easily by recalling the alternative definition of ℋ as a subset of ℳ(𝑋,𝑌)
and using the definition of 𝜏#ℎ. We remark that 𝜏(�̃� , (ℎ)−1(𝑑𝑢)) is then a probability in 𝒫(𝒫(𝑌)).
Hence we can rewrite Eq. (S6) as

ℓ̃ (ℎ, �̃�, �̃�) =
∫
𝑢∈𝒫(𝑌)

(𝜆ℓ )�̃�(𝑢, �̃�) 𝜏(�̃� , (ℎ)−1(𝑑𝑢)) = Eu∼𝜏(�̃� ,(ℎ)−1(·))[(𝜆ℓ )(u, �̃� , �̃�)] ,

with 𝜏 having support included in ℎ̃∗(𝑋).

As for more dependent corruptions of 𝑋, i.e. 𝜏(�̃� , �̃� , 𝑑𝑥), the action on the hypothesis will be

dependent from �̃�. Therefore we obtain ℓ̃ (ℎ, �̃�, �̃�) = E𝜏(�̃� ,�̃� ,(ℎ)−1(·))[(𝜆ℓ )(u, �̃� , �̃�)] , where only

the simple 𝑌 noise can be considered, given the missing result for the br equality in the

𝐷(𝜏) = 𝐷(𝜆) = 𝑋 × 𝑌 case. As for points 3, 4 and 5, we follow the same procedure deployed

in the above, using the action formula of dependent corruptions as described in the proof of

Theorems 16 and 18, and obtain the thesis. □
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