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SUPERELLIPTIC JACOBIANS AND CENTRAL

SIMPLE REPRESENTATIONS

YURI G. ZARHIN

Abstract. Let f(x) be a polynomial of degree at least 5 with
complex coefficients and without repeated roots. Suppose that all
the coefficients of f(x) lie in a subfield K of C such that:

• K contains a primitive p-th root of unity;
• f(x) is irreducible over K;
• the Galois group Gal(f) of f(x) acts doubly transitively on
the set of roots of f(x);

• the index of every maximal subgroup of Gal(f) does not di-
vide deg(f)− 1.

Then the endomorphism ring of the Jacobian of the superelliptic
curve yp = f(x) is isomorphic to the pth cyclotomic ring for all
primes p > deg(f).

1. Introduction

The aim of this paper is to explain how to compute the endomor-
phism algebra of Jacobians of smooth projective models of superelliptic
curves yq = f(x) where q = pr is a prime power and f(x) a polynomial
of degree n ≥ 5 with complex coefficients that is in “general position”.
Here “general position” means that there is a (sub)field K such that all
the coefficients of f(x) lie in K and the Galois group of f(x) acts dou-
bly transitively on the set of its roots (in particular, f(x) is irreducible
over K). It turns out that for a broad class of the doubly transitive
Galois groups (and under certain mild restrictions on q) the correspond-
ing endomorphism algebra is “as small as possible”, i.e., is canonically
isomorphic to a product of cyclotomic fields Q(ζpi) (1 ≤ i ≤ r).

In order to state explicitly our results, let us start with the nota-
tion and some basic facts related to cyclotomic fields and cyclotomic
polynomials. As usual, Z,Q,C denote the ring of integers, the field of
rational numbers and the field of complex numbers respectively.

Let p be an odd prime and Fp the corresponding (finite) prime field
of characteristic p. We write Zp and Qp for the ring of p-adic integers
and the field Qp of p-adic numbers respectively. Let r be a positive
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2 YURI G. ZARHIN

integer and q = pr. Let

ζq ∈ C.

be a primitive qth root of unity. We write Q(ζq) be the qth cyclotomic
field and

Z[ζq] =

φ(q)−1
∑

i=0

Z · ζ iq

for its ring of integers. (Hereafter φ(q) := (p − 1)pr−1 is the Euler
function.)

Let us consider the polynomial

Pq(t) :=

q−1
∑

j=0

tj =
r
∏

i=1

Φpi(t) ∈ Z[t]

where

Φpi(t) =

p−1
∑

j=0

tip
r−1 ∈ Z[t]

is the pith cyclotomic polynomial.
Let f(x) ∈ C[x] be a polynomial of degree n ≥ 4 without repeated

roots. In what follows we always assume that either p does not divide

n or q divides n.
Let Cf,q be a smooth projective model of the smooth affine curve

yq = f(x).

It is well known ([16], pp. 401–402, [30], Prop. 1 on p. 3359, [21], p.
148) that the genus g(Cf,p) of Cf,p is (q − 1)(n − 1)/2 if p does not
divide n and (q − 1)(n− 2)/2 if q divides n. The map

(x, y) 7→ (x, ζpy)

gives rise to a non-trivial biregular automorphism

δq : Cf,q → Cf,q

of period q.
Let J(Cf,q) be the Jacobian of Cf,q; it is a g(Cf,q)-dimensional abelian

variety. We write End(J(Cf,q)) for the ring of endomorphisms of J(Cf,q)
and End0(J(Cf,q)) = End(J(Cf,q))⊗Q for the endomorphism algebra
of J(Cf,q). By functoriality, δq induces an automorphism of J(Cf,q),
which we still denote by δq. It is known ([21, p. 149], [23, p. 448], [34,
Lemma 4.8]) that

Pq(δq) = 0 (1)

in End(J(Cf,q)). Then (1) gives rise to the ring homomorphism,

iq,f : Z[t]/Pq(t)Z[t] →֒ Z[δq] ⊂ End(J(Cf,q)), t+ Pq(t)Z[t] 7→ δq, (2)

which is a ring embedding ([21, p. 149], [23, p. 448], [34, Lemma 4.8]).
(The first map in (2) is actually a ring isomorphism.) This implies
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that the subring Z[δq] of End(J(Cf,q)) generated by δq is isomorphic to
Z[t]/Pq(t)Z[t]. It follows that the Q-subalgebra

Q[δq] ⊂ End0(J(Cf,q)) (3)

generated by δq has Q-dimension q − 1, is isomorphic to

Q[t]/Pq(t)Q[t] ∼=
r
∏

i=1

Q(ζpi)

and therefore has dimension q − 1.
We will need the following elementary observation.

Remark 1.1. (i) Suppose that a prime p is greater than n. Then
p does not divide n!. Since every subgroup H of Gal(f) is
isomorphic to a subgroup of Sn, its order |H| divides n! and
therefore is not divisible by p. Hence, if p > n, then |H| is not
divisible by p.

(ii) Suppose that H is a transitive subgroup of Gal(f) with respect
to the action on the roots of f(x). Then its order |H| is divisible
by n.

Let us formulate our main results.
First, we start with the case q = p. Then Pp(t) coincides with Φp(t)

and there is a natural ring isomorphism

Z[t]/Pp(t)Z[t] ∼= Z[ζp]

that sends (the coset of) t to ζp. This gives us the the ring embedding

ip,f : Z[ζp] →֒ Z[δp] ⊂ End(J(Cf,p)), ζp 7→ δp. (4)

Notice also that the rings Z[δp] and Z[ζp] are isomorphic.

Theorem 1.2. Let n ≥ 5 be an integer and p an odd prime such that
K contains a primitive pth root of unity.

Suppose that the Galois group Gal(f) of f(x) contains a subgroup
H that acts doubly transitively on the n-element set Rf of roots of the
polynomial f(x) and enjoys the following properties.

(i) The index of every maximal subgroup of H does not divide n−1.
(ii) p does not divide |H|. (E.g., p > n.)

Then End0(J(Cf,p)) = Q[δp] and End(J (f,p)) = Z[δp].

Theorem 1.3. Let K be a subfield of C such that all the coefficients
of f(x) lie in K. Assume also that f(x) is an irreducible polynomial
in K[x] of degree n ≥ 5 and its Galois group over K is either the full
symmetric group Sn or the alternating group An. Then

End(J(Cf,p)) = Z[δp] ∼= Z[ζp].
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Remark 1.4. Theorem 1.3 was stated in [37, Th. 4.2]. Its proof was
based on an assertion that a certain “permutational” representation
(FB

p )
00 (that is called the heart 1) of the alternating group Alt(B) = An

over Fp is very simple 2 [36, Th. 4.7]. Unfortunately, there is an error
in the proof of [36, Th. 4.7] when n = 5, p > 5, caused by an improper
use of [36, Cor. 4.4] (see [36, p. 108, lines 4-5]). So, the proof in [37]
works only under an additional assumption that either n > 5 or p ≤ 5.

In this note we handle the remaining case when n = 5, p > 5. It
turns out that if p 6≡ ±1 mod 5 then the representation of the group
A5 is very simple, which allows us to salvage in this case the arguments
of [36].

However, if p ≡ ±1 mod 5 then the 4-dimensional representation
(

FB
p

)00
ofA5, viewed as the representaton of the covering group SL(2,F5),

splits into a tensor product of two 2-dimensional representations. In

particular,
(

FB
p

)00
is not very simple, and we use a notion of a central

simple representation (see Section 4 below), in order to prove Theorem
1.3 in this case.

Remarks 1.5. If f(x) ∈ K[x] then the curve Cf,p and its Jacobian
J(Cf,p) are defined over K. Let Ka ⊂ C be the algebraic closure of
K. Then all endomorphisms of J(Cf,p) are defined over Ka. Hence, in
order to prove Theorems 1.3 and 6.7, it suffices to check that the ring
of all Ka-endomorphisms of J(Cf,p) coincides with Z[δp].

Now let us try to relax the restrictions on p, keeping the double
transitivity of Gal(f). Our next result deals with doubly transitive
sporadic simple (Galois) groups, whose description may be found in
[22], [5, Ch. 6 and Ch. 7, Sect. 7.7, p. 252-253].

Theorem 1.6. Let p be an odd prime and

Gal(f) ⊂ Perm(Rf ) ∼= Sn

a permutation group that acts doubly transitively on the n-element set
Rf . Suppose that (n,Gal(f)) enjoys one of the following properties.

(M) n ∈ {11, 12, 22, 23, 24}, and Gal(f) is isomorphic to the corre-
sponding Mathieu group Mn. If n = 11 then we assume addi-
tionally that p > 3.

(HS) n = 176, p > 7, and Gal(f)) is isomorphic to the sporadic
simple Higman-Sims group HS.

(CO3) n = 276, p 6∈ {3, 5, 11}, and Gal(f)) is isomorphic to the spo-
radic simple Conway group Co3.

Then End0(J(Cf,p)) = Q[δp] and End(J(Cf,p)) = Z[δp].

1See [17, 13] and Section 3 below for the definition of the heart.
2See [34, 38] and Section 4 below for the definition and basic properties of very

simple representations.
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Remark 1.7. The case (M) of Theorem 1.6 gives a (partial) answer
to a question of Ravi Vakil that was asked during my talk at Simons
Symposium “Geometry Over Non-closed Fields” (Puerto Rico, March
2015).

Now let us discuss the case when our Galois groups are doubly tran-
sitive finite simple Chevalley groups - they are classified in [4] and their
action described in details in [5, Sect. 7.7]. (For general results about
Chevalley groups see [28].)

Theorem 1.8. Suppose that p be an odd prime and Gal(f) contains a
subgroup H that acts doubly transitively on the n-element set Rf and
is isomorphic to a finite Chevalley group G(q), and the corresponding
stabilizers correspond to Borel subgroups of G(q), which are maximal
subgroups of index n.

Suppose that (n,G(q), p) enjoys one of the following properties.

(L2) Let ℓ be a prime and r a positive integer. Then n = q+1 where
q = ℓr > 11 and G(q) is the projective special linear group

L2(q) = PSL(2,Fq)

where Fq is a finite q-element field. Assume additionally that
either p 6= ℓ or q = ℓ = p.

(Lmq) Let m ≥ 3 be an integer, ℓ a prime, r a positive integer. Then
n = (qm − 1)/(q − 1) where q = ℓr and G(q) is the projective
special linear group

Lm(q) = PSL(m,Fq)

where Fq is a finite q-element field. Assume additionally that
p 6= ℓ and

(m, q) 6= (3, 2), (3, 4), (4, 2), (4, 3), (6, 2), (6, 3).

(U3) Let ℓ be a prime and r a positive integer. Then n = q3+1 where
q = ℓr is a power of a prime ℓ,

q 6= 2, 5

and G(q) is the projective special unitary groupU3(q) = PSU3(Fq).
(Sz) Let r be a positive integer,

q = 22r+1, n = q2 + 1, m = 2r+1.

Then H is the simple Suzuki group Sz(q) =2 B2(q). In addition,
p does not divide (q + 1 +m).

(Ree) Let r be a positive integer,

q = 32r+1, n = q2 + 1, m = 3r+1.

The group H is the simple Ree group Ree(q) =2 G2(q). In
addition, p does not divide 3(q + 1)(q +m+ 1)(q −m+ 1).

Then End0(J(Cf,p)) = Q[δp] and End(J(Cf,p)) = Z[δp].
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Now let us assume that r is any positive integer (recall that q = pr).
In this case we obtain the results about the endomorphism algebra

End0(J(Cf,q)) = End(J(Cf,q)) ⊗ Q of J(Cf,q) that may be viewed as
analogues of Theorems 1.3 and Theorem 1.2 for the endomorphism
algebra End0(J(Cf,q).

Theorem 1.9. Suppose that n ≥ 5 is an integer, p an odd prime, q
divides n, and K contains a primitive qth root of unity.

Let us assume that the Galois group Gal(f) of f(x) contains a sub-
group H that acts doubly transitively on the n-element set Rf of roots
of the polynomial f(x) and enjoys the following properties.

(i) The index of every maximal subgroup of H does not divide n−1.
(ii) p does not divide |H|. (E.g., p > n.)

Then

End0(J(Cf,q)) = Q[δq] ∼=
r
∏

i=1

Q(ζpi).

Theorem 1.10. Let K be a subfield of C such that all the coefficients
of f(x) lie in K. Suppose that f(x) is an irreducible polynomial in K[x]
of degree n ≥ 5 and its Galois group over K is either the full symmetric
group Sn or the alternating group An. Assume also that either p does
not divide n or q divides n. Then

End0(J(Cf,q)) = Q[δq] ∼=
r
∏

i=1

Q(ζpi).

Remark 1.11. Theorem 1.10 was stated in [34, Th. 1.1]. Similarly
(see Remark 1.4), the proof in [34] works only under an additional
assumption that either n > 5 or p ≤ 5. In this paper we handle the
remaining case n = 5, p > 5.

Remark 1.12. An analogue of Theorem 1.10 when p | n but q does
not divide n was proven in [33].

The paper is organized as follows. In Section 2 we discuss complex
abelian varieties Z with multiplications from cyclotomic fields, paying
special attention to the centralizers of these fields in End0(Z) and their
action on the differentials of the first kind when Z is a superelliptic Ja-
cobian In Section 3 we discuss modular representations of permutation
groups, paying a special attention to the hearts of these representa-
tions. In Section 4 we introduce central simple representations and re-
call basic properties of very simple representations that first appeared
in [34, 38], paying a special attention to the very simplicity and cen-
tral simplicity of hearts of permutational representations in the case of
doubly transitive permutation groups. In Section 5 we return to our
discussion of abelian varieties Z with multiplications from cyclotomic
fields Q(ζq), paying a special attention to the Galois properties of the
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set of δq-invariants. In Section 6 we review results of [37] about endo-
morphism algebras of superelliptic Jacobians. In Section 7 we prove
our main results that deal with the case q = p. The proofs for the case
of arbitrary q are contained in Section 8.

Acknowledgements. I am grateful to the referee, whose comments
helped to improve the exposition.

2. Endomorphism fields of abelian varieties and their

centralizers

In what follows E is a number field and OE the ring of algebraic
integers in E. It is well known that OE is a Dedekind ring and therefore
every finitely generated torsion-free OE-module is projective/locally
free and isomorphic to a direct sum of locally free OE-modules of rank
1. In addition, the natural map

OE ⊗Q → E, e⊗ c 7→ c · e ∀e ∈ E, c ∈ Q

is an isomorphism of Q-algebras.
Let Z be an abelian variety over C of positive dimension g, let

End(Z) be the ring of its endomorphisms. If n is an integer then
we we write nZ for the endomorphism

nZ : Z → Z, z 7→ nz.

Clearly, nZ ∈ End(Z). By definition, 1Z is the identity selfmap of Z.
In addition, nZ : Z → Z is an isogeny if and only if n 6= 0.

We write
End0(Z) = End(Z)⊗Q

for the corresponding endomorphism algebra of Z, which is a finite-
dimensional semisimple Q-algebra. Identifying = End(Z) with

End(Z)⊗ 1 ⊂ End(Z)⊗Q = End0(Z),

we may view End(Z) as an order in the Q-algebra End0(Z).
The action of End(Z) by functoriality on the g-dimensional complex

vector space Ω1(Z) of differentials of the first kind on Z gives us the
ring homomorphism End(Z) → EndC(Ω

1(Z) [27, Ch. 1, Sect. 2.8],
which extends by Q-linearity to the homomorphism of Q-algebras

jZ : End0(Z) → EndC(Ω
1(Z)), (5)

which sends 1Z to the identity automorphism of the C-vector space
Ω1(Z). Let E be a number field that is a Q-subalgebra of End0(Z) with
the same 1 = 1Z . Let ΣE be the [E : Q]-element set of field embeddings
σ : E →֒ C. Let us define for each σ ∈ ΣE the corresponding weight

subspace

Ω1(Z)σ = {ω ∈ Ω1(Z) | jZ(e)ω = σ(e)ω ∀e ∈ E} ⊂ Ω1(Z).

The well known splitting

E ⊗Q C = ⊕σ∈ΣE
E ⊗E,σ C = ⊕σCσ where Cσ = E ⊗E,σ C = C
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implies that
Ω1(Z) = ⊕σ∈ΣE

Ω1(Z)σ.

Let us put
nσ = dimC(Ω

1(Z)σ).

Let D be the centralizer of E in End0(Z). Clearly, E lies in the
center of D, which makes D is a finite-dimensional E-algebra. It is
also clear that each subspace Ω1(Z)σ is jZ(D)-invariant, which gives us
a Q-algebra homomorphism

jZ,σ : D → EndC(Ω
1(Z)σ), (6)

that sends 1 = 1Z ∈ D to the identity automorphism of the C-vector
space Ω1(Z)σ.

Lemma 2.1. Let D be as above. Suppose that D is a central simple
E-algebra of dimension d2 where d is a positive integer. Then:

(i) d divides all the multiplicities nσ. In particular, if nσ = 1 for
some σ ∈ ΣE then d = 1 and D = E.

(ii) Let M be the the number of σ’s with nσ 6= 0. Then

dM ≤ dim(Z).

In particular, if d = 2dim(Z)/[E : Q] then M ≤ [E : Q]/2.

Proof. Our condition on D implies that Dσ = D ⊗E,σ C is isomorphic
to the matrix algebra Matd(C) of size d over C for all σ ∈ ΣE .

We may assume that nσ > 0. Then Ω1(Z)σ 6= {0} and jZ,σ(D) 6= {0}.
Extending jZ,σ by C-linearity, we get a C-algebra homomorphism

Dσ → EndC((Ω
1(Z)σ),

which provides Ω1(Z)σ with the structure of a Dσ = Matd(C)-module.
This implies that each nσ is divisible by d. This proves (i). In order to
prove (ii), it suffices to notice that

dim(Z) =
∑

σ

dimC(Ω
1(Z)σ) =

∑

σ

nσ ≥ dM.

�

Remark 2.2. (i) Let Λ be the centralizer of δp in End(J(Cf,p)),
which coincides with the centralizer of Z[δp] in End(J(Cf,p)).
Let us consider the Q-subalgebra

ΛQ = Λ⊗Q ⊂ End(J(Cf,p))⊗Q = End0(J(Cf,p)).

Clearly, ΛQ coincides with the centralizer ofQ[δp] in End0(J(Cf,p)).
Since δp respects the theta divisor on the Jacobian J(Cf,p), the
algebra ΛQ is stable under the corresponding Rosati involution

and therefore is semisimple as a Q-algebra. It is also clear that
the number field Q[δp] ∼= Q(ζp) lies in the center of ΛQ. Hence,
ΛQ becomes a semisimple Q[δp]-algebra.
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(ii) Let i be an integer such that 1 ≤ i ≤ p− 1. We write σi for the
field embedding

σi : Q[δp] →֒ C

that sends δp to ζ
−i
p . Let us consider the corresponding subspace

Ω1(J(Cf,p))σi
of differentials of the first kind on J(Cf,p). It is

known [37, Remark 3.7] that if p does not divide n then

nσi
= dimC(Ω

1(J(Cf,p))σi
) =

[

ni

p

]

. (7)

(iii) It follows from Lemma 2.1 applied to Z = J(Cf,p) and E =
Q[δp] that if p does not divide n and ΛQ is a central simple
Q[δp]-algebra of dimension d2 then d divides all [ni/p] for all
integers i with 1 ≤ i ≤ p− 1.

(iv) Suppose that either n = p + 1, or n − 1 is not divisible by p.
Then the greatest common divisor of all nσi

’s is 1 [39, Lemma
8.1(D) on p. 516–517]. It follows that if ΛQ is a central simple
Q[δp]-algebra then ΛQ = Q[δp].

(v) Suppose that p divides n − 1, say, n = kp + 1 where k is an
integer. Then the greatest common divisor of all nσi

’s is k. [39,
Lemma 8.1(D) on p. 516–517] It follows that if ΛQ is a central
simple Q[δp]-algebra of dimension d2 then d divides k.

(vi) The number of i with nσi
> 0 is at least (p+1)/2 [36, p. 101]. It

follows that if ΛQ is a central simple Q[δp]-algebra of dimension
d2 then, in light of Proposition 2.1,

d · p+ 1

2
≤ g

where g = dim(J(Cf,p)) is the genus of Cf,p. This implies that

d ≤ 2g

p+ 1
<

2g

p− 1
.

Lemma 2.3. Let H be a finite-dimensional E-algebra, and Λ an order
in H that contains OE. (In particular, Λ is a finitely generated torsion-
free OE-module and the natural map Λ⊗Q → H is an isomorphism of
finite-dimensional Q-algebras.)

Suppose that there are a positive integer d and a maximal ideal m
of OE with residue field k = OE/m such that the k-algebra Λ/mΛ is
isomorphic to the matrix algebra Matd(k) of size d over k.

Then H is a central simple E-algebra of dimension d2.

Proof. Let CQ the center of H that is a finite-dimensional commutative
E-algebra. Then C := CQ ∩ Λ is the center of Λ.

Clearly, C contains OE and is a saturated OE-submodule of Λ. The
latter means that if eu ∈ C for some u ∈ Λ and nonzero e ∈ OE then
u ∈ Λ. This implies that the quotient Λ/C is torsion-free (and finitely
generated) OE-module and therefore is projective. It follows that C



10 YURI G. ZARHIN

is a direct summand of the OE-module D and therefore there is an
OE-submodule P of Λ such that

Λ = C ⊕P.

Similarly, OE is a saturated OE-submodule of C and, by the same
token, there is a locally free OE-submodule Q of C such that

C = OE ⊕Q and Λ = C ⊕P = OE ⊕Q⊕P.

Then the the natural map of OE/m = k-modules,

OE/m⊕Q/mQ = C/mC → Λ/mΛ ∼= Matd(k)

is injective and its image lies in the center k of Matd(k). The k-
dimension arguments imply that Q/mQ = {0}. Since Q is finitely
generated projective, Q = {0}, i.e., C = OE and the center of H is

CQ = C ⊗Q = OE ⊗Q = E.

Hence, H is a finite-dimensional E-algebra with center E.
Let us check the simplicity of H. Let JQ be a proper two-sided ideal

of H. We need to check that JQ = {0}. In order to do that, let us
consider the intersection J := JQ ∩ Λ, which is obviously a two-sided
ideal of Λ. It is also clear that J is a saturated OE-submodule of Λ,
i.e., the quotient Λ/J is a torsion free (finitely generated) OE-module.
Hence, Λ/J is a projective OE-module. It follows that J is a direct
summand of the OE-module Λ, i.e., there exists an OE-submodule Q
of Λ such that Λ = J ⊕Q. If Q = {0} then Λ = J and

H = Λ⊗Q = J ⊗Q = JQ;

so JQ = H, which is not true, because JQ is a proper ideal of H. This
implies that Q 6= {0} and therefore Q/mQ 6= {0}. We have

Λ/mΛ = J/mJ ⊕Q/mQ.

Clearly, J/mJ is a proper two-sided ideal of the simple algebra Λ/mΛ ∼=
Matd(k). This implies that J/mJ = {0} , which implies that J = {0}
and therefore JQ = {0}.

To summarize: H is a simple finite-dimensional E-algebra with cen-
ter E, i.e., a finite-dimensional central simple E-algebra.

On the other hand, the E-dimension of H equals the rank of the
locally free OE-module Λ, which, in turn, equals the k = OE/m-
dimension of Λ/mΛ. Since Λ/mΛ ∼= Matd(k) has k-dimension d2, the
E-dimension of H is also d2. It follows that H is a central simple
E-algebra of dimension d2.

�
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3. Permutation groups and permutation modules

Our exposition in this section follows closely [36, Sect. 2], see also
[17].

Let n ≥ 5 be an integer, B a n-element set, and Perm(B) the group
of permutations of B, which is isomorphic to the full symmetic group
Sn. The group Sn has order n! and contains precisely one (normal)
subgroup of index 2 that we denote by Alt(B). Any isomorphism
between Perm(B) and Sn induces an isomorphism between Alt(B) and
the alternating group An. Since n ≥ 5, the group Alt(B) is simple
non-abelian; its order is n!/2. Let G be a subgroup of Perm(B).

Let F be a field. We write FB for the n-dimensional F -vector space
of maps h : B → F . The space FB is provided with a natural action of
Perm(B) defined as follows. Each s ∈ Perm(B) sends a map h : B → F
into sh : b 7→ h(s−1(b)). The permutation module FB contains the
Perm(B)-stable hyperplane

(FB)0 = {h : B → F |
∑

b∈B

h(b) = 0}

and the Perm(B)-invariant line F ·1B where 1B is the constant function
1. The quotient FB/(FB)0 is a trivial 1-dimensional Perm(B)-module.

Clearly, (FB)0 contains F · 1B if and only if char(F ) divides n. If
this is not the case then there is a Perm(B)-invariant splitting

FB = (FB)0 ⊕ F · 1B.
Let G be a subgroup of Perm(B). Clearly, FB and (FB)0 carry nat-

ural structures of G-modules or (which is the same) of F [G]-modules.
(Hereafter F [G] stands for the group algebra of G.)

If F = Q then the character of QB sends each g ∈ G to the number
of fixed points of g in B ([26], ex. 2.2, p.12); it takes on values in Z

and called the permutation character of B. Let us denote by φ = φB :
G → Q the character of (QB)0.

If char(F ) = 0 then the F [G]-module (FB)0 is absolutely simple 3

if and only if the action of G on B is doubly transitive ([26, ex. 2.6,
p. 17], [17]). (Notice that 1 + φ is the permutation character. This
implies that the character φ also takes on values in Z.) In particular,
Qp[G]-module (QB

p )
0 is absolutely simple if and only if the action of G

on B is doubly transitive.
In what follows we concentrate on the case of F = Fp.

Remark 3.1. • Let p be a prime that does not divide the order
of G. This condition is automatically fulfilled if p > n, because
G, being isomorphic to a subgroup of Sn, has order that divides
n!.

3Recall that a simple F [G]-module V is called absolutely simple if the central-
izer of G in EndF (V ) coincides with F or equivalently the natural homomorphism
F [G] → EndF (V ) of F -algebras is surjective.
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• Suppose that the action of G on B is doubly transitive. Taking
into account that the representation theory of G over Qp is “the
same over Fp as over Qp” ([26, Sect. 15.5, Prop.43], [17]), we
conclude that the Fp[G]-module (FB

p )
0 is absolutely simple (see

also [39, Cor. 7.5 on p. 513]).

Definition 3.2. Let G be a subgroup of Perm(B).
If p | n then let us define the G-module

(

FB
p

)00
:= (FB

p )
0/(Fp · 1B).

If p does not divide n then let us put
(

FB
p

)00
:= (FB

p )
0.

The G-module (FB)0 is called the heart of the permutation representa-
tion ofG onB [17]. It follows from the definition that dimFp

(
(

FB
p )

00
)

) =

n− 1 if n is not divisible by p and dimFp
(
(

FB
p )

00
)

= n− 2 if p | n.
Lemma 3.3. Assume that G = Perm(B) or Alt(B). Then the G-

module
(

FB
p

)00
is absolutely simple.

Proof. This result is well known (and goes back to Dickson). See [3,
Th. 5.2 on p. 133], [31], [17], [36, Lemma 2.6]. �

Remark 3.4. It turns out that the case of n = 5 and

G = Alt(B) ∼= A5
∼= PSL(2,F5) = SL(2,F5)/{±1}

is rather special when

p ≡ ±1 mod 5. (8)

Namely, in this case p > 5 and the G = PSL(2,F5)-module (FB
p )

00 =

(FB
p )

0 viewed as the SL(2,F5)-module splits into a nontrivial tensor
product. In order to see this, recall [7, Sect. 38] that SL(2,F5) has the
ordinary character θ2 of degree 4 (which, is the lift of φ5 from A5) and
two ordinary irreducible characters η1 and η2 of degree 2 with

Q(η1) = Q(η2) = Q(
√
5),

whose product η1η2 coincides with θ2. By the quadratic reciprocity
law, the congruence (8) implies that

√
5 ∈ Fp and therefore

√
5 lies in

the field Qp of p-adic numbers, because p 6= 2, 5 is odd. This means
that

Qp(η1) = Qp(η2) = Qp.

By a theorem of Janusz [12, Theorem (d) on p. 3-4], characters of
both η1 and η2 can be realized over Qp, i.e., there are two-dimensional
Qp-vector spaces V1 and V2 and linear representations

ρ1 : SL(2,F5) → AutQp
(V1) ∼= GL(2,Qp), (9)

ρ2 : SL(2,F5) → AutQp
(V2) ∼= GL(2,Qp),
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whose characters are η1 and η2 respectively. Let T1 and T2 be any
SL(2,F5)-invariant Zp-lattices of rank 2 in V1 and V2 respectively. Since
the order 120 of the group SL(2,F5) is prime to p and the Qp[SL(2,F5)]-
modules V1 and V2 are simple, it follows from [26, Sect. 15.5, Prop.
43]) that their reductions modulo p

V̄1 = T1/pT1, V̄2 = T2/pT2

are simple Fp[SL(2,F5)]-modules. On the other hand, the tensor prod-
uct

T := T1 ⊗Zp
T2 ⊂ V1 ⊗Qp

V2

is a SL(2,F5) -invariant Zp-lattice of rank 4 in V1 ⊗Qp
V2 =: V . The

equality

η1η2 = θ2 (10)

of the corresponding class functions on SL(2,F5) implies (if we take
into account that φB is irreducible) that the Qp[SL(2,F5)]-module V is
simple and the Fp[SL(2,F5)]-module

T/pT =
(

T1 ⊗Zp
T2

)

/p = (T1/pT1)⊗Fp
(T1/pT1) = V̄1 ⊗Fp

V̄2 (11)

is simple. On the other hand, the equality (10) implies the existence
of an isomorphism

u : V = V1 ⊗Qp
V2

∼= (QB
p )

0

of the Qp[SL(2,F5)]-modules.
Obviously,

(ZB
p )

0 := {h : B → Zp |
∑

b∈B

h(b) = 0}

is a SL(2,F5)-invariant Zp-lattice of rank 4 in (QB
p )

0. (Here SL(2,F5)

acts on (QB
p )

0 through the quotient SL(2,F5)/{±1} = A5.) Notice
that u(T ) is a (may be, another) SL(2,F5)-invariant Zp-lattice of rank
4 in (QB

p )
0 and the Fp[SL(2,F5)]-module u(T )/p u(T ) is obviously iso-

morphic to T/pT . In light of [26, Sect. 15.1, Th. 32], the simplicity of
the Fp[SL(2,F5)]-modules T/pT (and, hence, of u(T )/p u(T )) implies
that the Fp[SL(2,F5)]-modules T/pT and (ZB

p )
0/p(ZB

p )
0 are isomorphic.

Taking into account (11) and that (ZB
p )

0/p·(ZB
p )

0 = (FB
p )

0, we conclude

that that the SL(2,F5)-modules V̄1 ⊗Fp
V̄2 and (FB

p )
0 are isomorphic.

Remark 3.5. One may find an explicit construction of the group em-
beddings SL(2,F5) → GL(2,Fp) (when p satisfies (8)) in the book of
M. Suzuki [29, Ch. 3, Sect. 6].
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4. Very simple and central simple representations

Definition 4.1. Let V be a vector space of over a field F , let G be
a group and ρ : G → AutF (V ) a linear representation of G in V . Let
R ⊂ EndF (V ) be a F -subalgebra containing the identity map

Id : V → V.

(i) We say that R is G-normal if

ρ(σ)Rρ(σ)−1 ⊂ R ∀σ ∈ G.

(ii) We say that a normal G-subalgebra is obvious if it coincides
either with F · Id or with EndF (V ).

(iii) We say that the G-module V is very simple if every G-normal
subalgebra of EndF (V ) is obvious.

(iii) We say that the G-module V is cental simple if every G-normal
subalgebra of EndF (V ) is a central simple F -algebra.

(iv) We say that the G-module V is strongly simple if every G-
normal subalgebra of EndF (V ) is a simple F -algebra.

Remark 4.2. (i) Clearly, a very simple G-module is central simple
and strongly simple. It is also clear that a central simple G-
module is strongly simple.

(ii) Clearly, a subalgebra R ⊂ EndF (V ) is G-normal if and only if
it is ρ(G)-normal. It follows readily that the G-module V is
very simple (resp. central simple) (resp. strongly simple) if and
only if the corresponding ρ(G)-module V is very simple (resp.
central simple) (resp. strongly simple). It is known [34, Rem.
2.2(ii)] that a very simple module is absolutely simple.

(iii) If R is a G-normal subalgebra of EndF (V ) then

ρ(σ)Rρ(σ)−1 = R ∀σ ∈ G.

Indeed, suppose that there is u ∈ R such that for some σ ∈ G

u 6∈ ρ(σ)Rρ(σ)−1.

This implies that

ρ(σ−1)uρ(σ−1)−1 = ρ(σ)−1uρ(σ) 6∈ ρ(σ)−1
(

ρ(σ)Rρ(σ)−1
)

ρ(σ) = R.

It follows that

ρ(σ−1)Rρ(σ−1)−1 6⊂ R,

which contradicts the normality of R, because σ−1 ∈ G. (Of
course, if dimF (V ) is finite, the desired equality follows readily
from the coincidence of F -dimensions of R and ρ(σ)Rρ(σ)−1.)

(iv) If G′ is a subgroup of G then every G-normal subalgebra is also
a normal G′-subalgebra. It follows that if the G′-module V is
very simple then the G-module V is also very simple.
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(v) Let us check that a strongly simple G-module V is simple. In-
deed, if it is not then there is a proper G-invariant F -vector
subspace W of V . Then the F -subalgebra

R := {u ∈ EndF (V ) | u(W ) ⊂ W}
is G-normal but even not semisimple, because it contains a
proper two-sided ideal

I(W,V ) := {u ∈ EndF (V ) | u(V ) ⊂ W}.
This proves the simplicity of V .

The centralizer EndG(V ) is obviously G-normal. This implies
that it is a division algebra over F . (Actually, it follows from
the simplicity of the G-module V .

If the G-module V is central simple (resp. very simple) then
normal EndG(V ) is a central division F -algebra (resp. coincides
with F · Id).

(vi ) If R is a G-normal subalgebra of EndF (V ) then for each σ ∈ G
the map

R → R, u 7→ ρ(σ)uρ(σ)−1

is an automorphism of the F -algebra R (in light of (iii)). This
implies that if C is the center of R then

ρ(σ)Cρ(σ)−1 = C

for all σ ∈ G. This means that C is a G-normal subalgebra of
EndF (V ).

Recall that a module V over a ring R is called isotypic if either V is
simple or is isomorphic to direct sum of finitely many copies of a simple
R-module W . The following assertion is contained in [34, Lemma 7.4]

Lemma 4.3. Let H be a group, F a field, V a vector space of finite pos-
itive dimension N over F . Let ρ : H → AutF (V ) be an irreducible lin-
ear representation of H. Let R be a H-normal subalgebra of EndF (V ).
Then:

(i) The faithful R-module V is semisimple.
(ii) Either the R-module V is isotypic or there is a subgroup H ′ of

finite index r in H such that r > 1 and r divides N .

Proposition 4.4. Let F be a field, whose Brauer group Br(F ) = {0}.
(E.g., F is either finite or an algebraically closed field.) Let V be a
vector space of finite positive dimension N over F . Let H be a group
and ρ : H → AutF (V ) a linear absolutely irreducible representation of
H in V . Suppose that every maximal subgroup of H has index that does
not divide N .

Then the H-module V is central simple.
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Proof. Slightly abusing the notation, we write F instead of F · Id.
Let R be a H-normal subalgebra of EndF (V ). It follows from Lemma

4.3 that the faithful R-module V is isotypic, i.e., there is a simple
faithful R-module W and a positive integer a such that the R-modules
V and W a are isomorphic. The existence of a faithful simple R-module
implies that R is a simple F -algebra. In particular, the center k of R
is a field. We have

F = F · Id ⊂ k ⊂ R ⊂ EndF (V ).

Then V carries the natural structure of a F -vector space. This implies
that the degree [k : F ] divides dimF (V ) = N .

The center k of H-normal R is also H-normal (see Remark 4.2(v)).
This gives rise to the group homomorphism

H → Aut(k/F ), σ 7→ {c 7→ ρ(σ)uρ(σ)−1}. (12)

Here Aut(k/F ) is the automorphism group of the field extension k/F .
By Galois theory, the order of Aut(k/F ) divides [k : F ], which in turn,
divides N . This implies that the kernel of the homomorphism (12) is
a subgroup of H , whose index divides N . Our condition on indices of
subgroups of H implies that the kernel coincides with the whole H ,
i.e., the homomorphism (12) is trivial. This means that all elements of
k commute with ρ(σ) for all σ ∈ H . The absolute irreducibility of ρ
implies that k ⊂ F and therefore

k = F = F · Id.
So, R is a simple F -algebra with center F · Id, i.e., is a central simple
F -algebra. This ends the proof. �

Theorem 4.5. Let F be a field, whose Brauer group Br(F ) = {0}.
(E.g., F is either finite or an algebraically closed field.) Let V be an
F -vector space of finite dimension N > 1. Let G be a group and

ρ : G → AutF (V )

be a group homomorphism. Let H be a normal subgroup of G that
enjoys the following properties.

(i) If H ′ is a subgroup of H of finite index N ′ and N ′ divides N
then H ′ = H.

(ii) H is a simple non-abelian group. Assume additionally that ei-
ther H = G, or H is the only proper normal subgroup of G.

(iii) The H-module V is absolutely simple, i.e., the representation
of H in V is irreducible and the centralizer EndH(V ) = F · Id.

Let R ⊂ EndF (V ) be a G-normal subalgebra. Then there are positive
integers a and b that enjoy the following properties.

(a) N = ab;
(b) The F -algebra R is isomorphic to the matrix algebra Mata(F ) of

size a over F . In particular, the G-module V is central simple.
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(c) The R-module V is semisimple, isotypic and isomorphic to Rb.
In addition, the centralizer R̃ = EndR(V ) is a normal G-subalgebra
that is isomorphic to the matrix algebra Matb(F ) of size b over
F .

(d) Suppose that a 6= 1, b 6= 1 (i.e., R is not obvious). Then both
homomorphisms

AdR : G → Aut(R) = R∗/F ∗Id ∼= GL(a, F )/F ∗ = PGL(a, F ),

AdR(σ)(u) = ρ(σ)uρ(σ)−1 ∀u ∈ R

and

AdR̃ : G → Aut(R̃) = R̃∗/F ∗Id ∼= GL(b, F )/F ∗ = PGL(b, F ),

AdR̃(σ)(u) = ρ(σ)uρ(σ)−1 ∀u ∈ R̃

(with σ ∈ G) are injective. In addition,

AdR(H) ⊂ PSL(a, F ), AdR̃(H) ⊂ PSL(b, F ).

(e) The H-module V is central simple.

Proof. Step 0. Since H is a simple group, V is a faithful H-module.
In light of (ii), V is a faithful G-module.

Clearly, V is a faithful R-module. Since R is G-normal,

ρ(σ)Rρ(σ)−1 = R ∀σ ∈ G. (13)

It follows from (ii) that

H = [H,H ] ⊂ [G,G] ⊂ G

and either G = H or G/H is a finite simple group (e.g., a cyclic group
of prime order).

Step 1. By Lemma 4.3(i), V is a semisimple R-module.
Step 2. In light of Lemma 4.3(ii), property (i) implies that the

R-module V is isotypic.
Step 3. Since the faithful R-module V is an isotypic, there exist a

faithful simple R-moduleW and a positive integer b such that V ∼= W b.
If we put a = dimF (W ) then we get

ba = b · dimF (W ) = dimF (V ) = N.

Clearly, EndR(V ) is isomorphic to the matrix algebra Matb(EndR(W ))
of size b over EndR(W ).

Consider the centralizer

k := EndR(W )

of R in EndF (W ). Since W is a simple R-module, k is a finite-
dimensional division algebra over F . Since Br(F ) = {0}, k must be a
field. Hence, the automorphism group AutF (k) of the F -algebra k is
actually the automorphism group Aut(k/F ) of the field extension k/F .



18 YURI G. ZARHIN

It follows that AutF (k) = Aut(k/F ) is finite and its order divides the
degree [k : F ]. We have

R̃ = EndR(V ) ∼= Matb(k).

Clearly, the F -subalgebra R̃ = EndR(V ) ⊂ EndF (V ) is stable under
the “adjoint action” of G, which gives rise to the group homomorphism

AdR̃ : G → Aut(R̃).

Since k is the center of Matb(k), it is stable under the action of G and
of its subgroup H . This gives rise to the group homomorphism

H → Aut(k/F ), h 7→ {λ 7→ ρ(h)λρ(h)−1 ∀λ ∈ k} ∀h ∈ H,

whose kernel H ′ has index [H : H ′] dividing [k : F ]. Since V carries
the natural structure of a k-vector space, [k : F ] divides dimF (V ) = N ,
the index [H : H ′] divides N . In light of (i), H ′ = H , i.e., the homo-
morphism is trivial. This means that center k of EndR(V ) commutes
with ρ(H). Since EndH(V ) = F , we have k = F . This implies that
EndR(V ) ∼= Matb(F ) and

AdR̃ : G → AutF (R̃) = R̃∗/F ∗Id ∼= GL(b, F )/F ∗ = PGL(b, F )

kills H if and only if R̃ = EndR(V ) ⊂ EndH(V ) = F · Id. Since

R̃ = EndR(V ) ∼= Matb(F ), the homomorphism AdR̃ kills H if and
only if b = 1, i.e., V is an absolutely simple (faithful) R-module. This
means that if b > 1 then AdR̃ does not kill H , i.e., the normal subgroup
ker(AdR̃) of G does not contain H . In light of (ii), this implies that
the group homomorphism

AdR̃ : G → Aut(R̃) ∼= PGL(b, F )

is injective if b > 1.
Since V is a semisimple module over the subalgebra R of EndF (V )

and R̃ is the centralizer of R in EndF (V ), it follows from the Jacobson
density theorem that

R = EndR̃(V ) ∼= EndF (W ) ∼= Mata(F ).

The “adjoint action” of G on R gives rise to the homomorphism

AdR : G → Aut(R) = R∗/F ∗Id ∼= PGL(a, F ).

Clearly, AdR kills H if and only if R commutes with ρ(H), i.e., R =
F · Id, which is equivalent to the equality a = 1. This means that if
a > 1 then AdR does not kill H , i.e., the normal subgroup ker(AdR)
of G does not contain H . In light of (ii), this implies that the group
homomorphism

AdR : G → Aut(R̃) ∼= PGL(a, F )

is injective if a > 1.
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To summarize: a normal G-subalgebra R is not obvious if and only
if

a > 1, b > 1.

If this is the case then both group homomorphisms

AdR : G → PGL(a, F ), AdR̃ : G → PGL(b, F )

are injective.
The last assertions of Theorem 4.5(d) about the images of H follow

from the equality H = [H,H ] and the inclusions

[GL(a, F ),GL(a, F )] ⊂ SL(a, F ), [GL(b, F ),GL(b, F )] ⊂ SL(b, F ).

The assertion (e) follows readily from the second assertion of (b) (if we
replace G by H). This ends the proof. �

Corollary 4.6. Keeping the assumption and notation of Theorem 4.5,
assume additionally that N = 2ℓ where ℓ is a prime. If the H-module
V is not very simple then there exist group embeddings

G →֒ PGL(2, F ), H →֒ PSL(2, F ).

Proof. LetR be aH-normal non-obviousH-subalgebra and R̃ = EndR(V ).
By Theorem 4.6, there are positive integers a and b such that

ab = N, a > 1, b > 1;R ∼= Mata(F ), R̃ ∼= Matb(F ).

Our conditions on N imply that either a = 2, b = ℓ or a = ℓ, b = 2. By
Theorem 4.5, there are group embeddings

G →֒ PGL(a, F ), H →֒ PSL(a, F )

and
G →֒ PGL(b, F ), H →֒ PSL(b, F ).

Since either a or b is 2, there are group embeddings

G →֒ PGL(2, F ), H →֒ PSL(2, F ).

�

Theorem 4.7. Suppose that n ≥ 5 is an integer, B is an n-element

set, and p is a prime. Let us consider the vector space
(

FB
p

)00
over the

field Fp endowed with the natural structure of a Perm(B)-module (see
Definition 3.2), and let

ρ : Perm(B) → AutFp

(

(

FB
p

)00
)

be the corresponding structure homomorphism.
Then:

(i) The Perm(B)-module
(

FB
p

)00
is very simple.

(ii) The Alt(B)-module
(

FB
p

)00
is very simple if and only if either

n > 5 or
n = 5, p 6≡ ±1 mod 5.
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(iii) Suppose that

n = 5, p ≡ ±1 mod 5.

and R ⊂ EndFp
(
(

FB
p

)00
) is a Alt(B)-normal subalgebra.

Then either R = Fp · Id, or R = EndFp
(
(

FB
p

)00
), or the Fp-

algebra R is isomorphic to the matrix algebra Mat2(Fp) of size
2 over Fp.

(iv) The Alt(B)-module
(

FB
p

)00
is central simple

Remark 4.8. The assertion of Theorem 4.7 was earlier proven in the
following cases.

(A) p ∈ {2, 3}, see [34, Ex. 7.2] and [36, Cor. 4.3].
(B) p > 3 and n ≥ 8, see [36, Cor. 4.6].

(C) N = dimFp
(
(

FB
p

)00
) is a prime. It follows readily from [36, Cor.

4.4(i)] applied to H = Alt(B) and V = (FB
p )

00. (We may apply
this result from [36], because Alt(B) is a simple non-abelian
group of order n!/2 and therefore its order is bigger that the
order of SN , since N ≤ n− 1.)

So, In the course of the proof we may assume that

p > 3; n ∈ {5, 6, 7}. (14)

Proof of Theorem 4.7. We assume that (14) holds.
Step 1. First assume that p | n. Then either n = p = 5 or n = p = 7.

In both cases

N = dimFp
((FB

p )
00) = n− 2

is a prime. Now the very simplicity of the Alt(B)-module (FB
p )

00 follows
from Remark 4.8(A). So, we may assume that p does not divide n and
therefore

N = n− 1.

Step 2. If n = 6 then N = 5 and the very simplicity of the Alt(B)-
module (FB

p )
00 follows from Remark 4.8(C). So, we may assume that

n ∈ {5, 7}.
Step 3. Suppose that n = 7. Then N = 6 = 2 × 3 where 3 is a

prime. It follows from Corollary 4.6 that if the Alt(B)-module (FB
p )

00

is not very simple then there is a group homomorphism

AdR : Alt(B) →֒ PSL(2,Fp).

However, it is known [29, Th. 6.25 on p. 412 and Th. 626 on p.
414] that PSL(2,Fp) does not contain a subgroup isomorphic to A7.
Since Alt(B) ∼= A7, we get a contradiction, which implies that the
Alt(B)-module (FB

p )
00 is very simple if n = 7.

Step 4. Suppose that n = 5. We are going to apply Corollary 4.6
to H = Alt(B), G = Perm(B) or Alt(B), and V = (FB

p )
00.
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Since p does not divide n = 5, we get p > 5, and n − 1 = 4 = 2 × 2
where 2 is a prime.

• Suppose that the Perm(B)-module (FB
p )

00 is not very simple.
It follows from Corollary 4.6 (applied to G = Perm(B), H =
Alt(B)) that there is a group embedding

AdR : Perm(B) →֒ PGL(2,Fp).

This implies that PGL(2,Fp) contains a subgroup isomorphic
to S5, because Perm(B) ∼= S5. Since p > 5, the order 120 of S5

is not divisible by p. However, there are no finite subgroups of
PGL(2,Fp) that are isomorphic to S5 [29, Th. 6.25 on p. 412
and Th. 626 on p. 414]; see also [24, Sect. 2.5]. The obtained
contradiction proves that the Perm(B)-module (FB

p )
00 is very

simple if n = 5.
• It follows from Corollary 4.6 (applied to G = H = Alt(B) and
V = (FB

p )
00) that if the Alt(B)-module (FB

p )
00 is not very simple

then there is an injective group homomorphism

AdR : Alt(B) →֒ PSL(2,Fp).

Then the order 60 of the group Alt(B) divides the order (p2 −
1)p/2 of the group PSL(2,Fp). This implies that 5 divides p2−
1 = (p + 1)(p − 1), i.e., p ≡ ±1 mod 5. This implies that if
n = 5 and p 6≡ ±1 mod 5 then Alt(B)-module (FB

p )
00 is very

simple.

Step 5. Suppose that n = 5 and p ≡ ±1 mod 5. Let us prove that
the Alt(B)-module (FB

p )
00 = (FB

p )
0 is not very simple. Recall (Remark

3.3) that there is a surjective homomorphism SL(2,F5) ։ A5, and
there are SL(2,F5)-modules V̄1 and V̄2 with

dimFp
(V̄1) = dimFp

(V̄2) = 2,

and an isomorphism of SL(2,F5)-modules (FB
p )

0 ∼= V̄1 ⊗Fp
V̄2. This

isomorphism induces an isomorphism of Fp-algebras

EndFp
((FB

p )
0) = EndFp

(V̄1)⊗Fp
EndFp

(V̄2),

under which (the images of) the subalgebras

R = EndFp
(V̄1)⊗ 1, R̃ = 1⊗ EndFp

(V̄2)

are Alt(B)-normal subalgebras of EndFp
((FB

p )
0), see [38, Example 3.1(ii)].

In particular, the Alt(B)-module (FB
p )

00 = (FB
p )

0 is not very simple.
On the other hand, it follows from Theorem 4.5 that if R is a non-

obvious Alt(B)-normal subalgebra of EndFp
((FB

p )
0) then R ∼= Mata(Fp)

where a positive integer a is a proper divisor of

dimFp
((FB

p )
0) = 4 = 22.

This implies that a = 2 and R ∼= Mat2(Fp).
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The assertion (iv) of Theorem 4.7 follows readily from already proven
(ii) and (iii). �

Theorem 4.9. Let n ∈ {11, 12, 22, 23, 24}. Let B be an n-element set
B and G ⊂ Perm(B) the corresponding Mathieu group Mn, which acts
doubly transitively on B. Let p be an odd prime. If n = 11, then we
assume additionally that p > 3.

Then

• the G-module (FB
p )

00 is central simple;

• if n 6= p+1 and n−1 is divisible by p, then the G-module (FB
p )

00

is very simple.

Proof. It follows from ([13], [17, Table 1]) that the absolutely simple
G = Mn-module (FB

p )
00 is absolutely simple. By [1] the index of every

maximal subgroup of Mn is at least

n > n− 1 ≥ N = dimFp

(

(FB
p )

00)
)

(recall that N is either n− 1 or n− 2).
In light of Proposition 4.4, the G = Mn-module (FB

p )
00 is central

simple. It remains to prove the very simplicity in the “exceptional”
cases when n 6= p+ 1 and n− 1 is divisible by p. We prove that in all
the exceptional cases the Mn-module (FB

p )
00 is very simple. After that

the desired result will follow from Theorem 6.6.

• n = 11. Then p = 5 and n − 1 = 2 × 5 where both 2 and 5
are primes. If the M11-module (FB

5 )
00 is not very simple then it

follows from Theorem 4.5(iii-d) that there is a group embedding
M11 →֒ PSL(2,F5), which is not true. Hence, the M11-module
(FB

5 )
00 is very simple.

• n = 12. Then n − 1 is a prime and there are no exceptional
cases.

• n = 22. Then n − 1 = 22 − 1 = 3 · 7 where both 3 and 7
are primes. Then p = 3 or 7. If the M22-module (FB

3 )
00 is not

very simple then it follows from Theorem 4.5(iii-d) that there
is a group embedding M22 →֒ PSL(3,Fp). Such an embedding
does not exist if p = 3, because the order of PSL(3,F3) is not

divisible by 11 while 11 divides the order of M22. Hence, the
M22-module (FB

3 )
00 is very simple.

Such an embedding does not exist if p = 7 as well, because
the order of PSL(3,F7) is not divisible by 11, which divides
the order of M22. Hence, the M22-module (FB

7 )
00 is also very

simple.
• n = 23. Then n − 1 = 22 = 2 · 11 where both 2 and 11 are
primes. Then p = 11. If the M23-module (FB

11)
00 is not very

simple then it follows from Theorem 4.5(iii-d) that there is a
group embeddingM23 →֒ PSL(2,F11). Such an embedding does
not exist. Hence, the M23-module (FB

11)
00 is very simple.
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• n = 24. Then n−1 = 23 is a prime and there are no exceptional
cases.

�

Proposition 4.10. Let G be a doubly transitive permutation subgroup
of a n-element set B. Let p > 3 be a prime. Suppose that (n,G) enjoys
one of the following properties.

(1) n = 176 and G is isomorphic to HS;
(2) n = 276 and G is isomorphic to Co3.

Then the G-module (FB
p )

00 is central simple.

Proof. It follows from [17, Tables] that in both cases the G-module
(FB

p )
00 is absolutely simple.

Case 1. According to the Atlas [1], if H is a maximal subgroup of
HS with index [HS : H ] < 176 then [HS : H ] = 100, which divides
neither 176− 1 nor 176− 2. By Proposition 4.4, the G-module (FB

p )
00

is central simple.
Case 2. According to the Atlas [1], if H is a maximal subgroup

subgroup of Co3 then its index m = [Co3 : H ] is greater or equal
than 276 [1]; in particular, it divides neither 276 − 1 nor 276 − 2. By
Proposition 4.4, the G-module (FB

p )
00 is central simple as well. �

Theorem 4.11. (i) Let ℓ be a prime, r a positive integer, and n =
q+ 1 where q = ℓr > 11.

(ii) Let G be a subgroup of Perm(B). Suppose that G contains a
subgroup H that is isomorphic to L2(q) = PSL(2,Fq) where Fq

is a q-element field.
If p is an odd prime then the G-module (FB

p )
00 is central simple.

Proof. It suffices to check that the H ∼= L2(q)-module (FB
p )

00 is central
simple. First, our conditions on q imply that each subgroup of L2(q)
(except L2(q) itself) has index ≥ q + 1 = n [29, p. 414, (6.27)]. This
implies that H acts transitively on the (q + 1)-element set B and the
stabilizer Hb of any b ∈ B has index q + 1. It follows from [29, Th.
6.25 on p. 412] that Hb ⊂ L2(q) is conjugate to the (Borel) subgroup
of upper-triangular matrices modulo {±1}. It follows that the L2(q)-
set B is isomorphic to the projective line P1(Fq) with the standard
fractional-linear action of L2(q), which is doubly transitive.

Notice that

q + 1 = n > N = dimFp

(

(FB
p )

00)
)

,

because N is either n − 1 or n − 2. It follows that the index of any
maximal subgroup of L2(q) does not divide N . On the other hand,
according to [17, Table 1], the H = L2(q)-module is absolutely simple.
It follows now from Proposition 4.4 that the H-module V is central
simple. �
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Theorem 4.12. Let O be a Dedekind ring, T a locally free/projective
O-module of finite positive rank r. Let E be the field of fractions of O,
m a maximal ideal in O and k = O/m its residue field. Let us consider
the r-dimensional E-vector space TE = T ⊗O E and the r-dimensional
k-vector space Tk = T/mT = T ⊗O k.

Let G be a group and ρ : G → AutO(T ) be a group homomorphism
(O-linear representation). Let us consider the corresponding E-linear
representation of G

ρE : G → AutE(TE), σ 7→ {t⊗ e 7→ ρ(σ)(t)⊗ e ∀t ∈ T, e ∈ E} ∀σ ∈ G

and the corresponding k-linear representation of G

ρk : G → Autk(Tk), σ 7→ {t⊗ c 7→ ρ(σ)(t)⊗ c ∀t ∈ T, c ∈ k} ∀σ ∈ G.

If ρk is central simple (resp. very simple) then ρE is central simple
(resp. very simple).

Proof. We view T = T ⊗ 1 as a certain G-invariant lattice in T ⊗O

E = TE and EndO(T ) = EndO(T ) ⊗ 1 as a certain G-invariant lattice
(subalgebra) in EndO(T )⊗O E = EndE(TE).

Let RE be a G-normal E-subalgebra of EndE(TE). Let CE be the
center of RE and JE a proper ideal of RE . We have

E ⊂ C, J ⊂ RE , J 6= RE .

Let us consider the O-subalgebra R := RE ∩ EndO(T ). Clearly, R is
a saturated O-submodule of EndO(T ), i.e., the quotient EndO(T )/R is
torsion free (finitely generated) O-module.

The natural map

R ⊗O E → RE , u⊗ e 7→ e · u
is an isomorphism of E-algebras. This implies that:

(i) C := C ∩ EndO(T ) is the center of R that contains O as a
saturated O-submodule, i.e., the quotient C/O is a torsion free
(finitely generated) O-module. In addition, C is a saturated
O-submodule of R, i.e., R/C is a torsion free finitely generated
O-module.

(ii) The intersection J := JE ∩EndO(T ) is a proper ideal of R that
is a saturated O-submodule of R, i.e., the quotient R/J is a
torsion free (finitely generated) O-module.

Since the O-modules EndO(T )/R, C/O, R/C and R/J finitely gener-
ated torsion free, they are projective, because the ring O is Dedekind.
This implies that there are locally free submodules R1 ⊂ EndO(T ),
C1 ⊂ C, D ⊂ R, and I ⊂ R such that

EndO(T ) = R⊕ R1, C = O ⊕ C1, R = C ⊕D, I ⊕ J = R. (15)

Since J is a proper ideal, I 6= 0. Since C1 and J are torsion-free finitely
generated O-modules they are also locally free/projective. Now let us
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consider the k = O/m-subalgebra

Rk = R⊗O k ⊂ EndO(T )⊗O k = Endk(Tk)

where Tk := T ⊗O k. Clearly,

(1) Rk is a G-normal subalgebra of Endk(Tk);
(2) k ⊕ (C1 ⊗O k) lies in the center of Rk.
(3) Rk = (J⊗O k)⊕ (I⊗O k) 6= {0}. This implies that Jk = J ⊗O k

is a proper two-sided ideal of Rk, because I 6= {0} and therefore
I ⊗O k 6= {0}.

Suppose that ρk is central simple. Then Rk is a simple k-algebra with
center k. It follows that

C1 ⊗O k = {0}, Jk = J ⊗O k = {0}.
Since C1 and J are locally free, we conclude that

C1 = {0}, J = {0},
which implies that

JE = {0}, C = O ⊕ C1 = O ⊕ {0} = O

and therefore CE = E. This means that TE is a central simple E-
algebra, which proves that ρE is also central simple.

Assume now that ρk is very simple. Then either Rk = k or Rk =
Endk(Tk). In the latter case, applying (15), we get

Endk(Tk) = (R⊗Ok)⊕(R1⊗Ok) = Rk⊕(R1⊗Ok) = Endk(Tk)⊕(R1⊗Ok).

Now k-dimension arguments imply that R1 ⊗O k = {0} and therefore
R1 = {0}. This implies that EndO(T ) = R ⊕ R1 = R and therefore
RE = EndE(TE).

Assume now that Rk = k. It follows from (15) that

R = O ⊕ (C1 ⊕D)

and therefore

k = R ⊗O k = k ⊕ (C1 ⊕D)⊗O k.

Again, k-dimension arguments imply that (C1 ⊕ D) ⊗O k = {0} and
therefore C1 ⊕D = {0}. It follows that R = O and therefore RE = E.
This proves that ρE is semisimple. �

5. Abelian varieties and cyclotomic fields

Let p be a prime, r a positive integer, and q = pr. Let E = Q(ζq) be
the qth cyclotomic field and OE = Z[ζq] its ring of integers.

Let us put
η = ηq := 1− ζq ∈ Z[ζq].

It is well known [32] that the principal ideal ηqZ[ζq] of Z[ζq] is maximal
and contains pZ[ζq]. Actually,

pZ[ζq] = ηφ(q)q Z[ζq].
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It follows that there is η′ ∈ Z[ζq] such that

η′Z[ζq] = ηφ(q)−1
q Z[ζq], ηqη

′ = η′ηq = p. (16)

The residue field Z[ζq]/ηZ[ζq] coincides with Fp. It is also well known
[32] that

Zp[ζq] = Z[ζq]⊗ Zp

is the ring of integers in the p-adic qth cyclotomic field Qp(ζq) and
ηqZp[ζq] is the maximal ideal of Zp[ζq] with residue field

Zp[ζq]/ηqZp[ζq] = Z[ζq]/ηqZ[ζq] = Fp.

Let K be a field of characteristic different from p. Let Ka be the
algebraic closure of K and Ks ⊂ Ka the separable algebraic closure
of K. We write Gal(K) for the automorphism group Aut(Ka/K) =
Gal(Ks/K) of the corresponding field extension.

Let Z be an abelian variety of positive dimension g over K, and
EndK(Z) (resp. End(Z)) the ring of its K-endomorphisms (resp. the
ring of all Ka-endomorphisms). By a theorem of Chow, all endomor-
phisms of Z are defined over Ks. In addition, Z[p] ⊂ Z(Ks) where Z[p]
is the kernel of multiplication by p in Z(Ka). If m is an integer then
we write mZ ∈ EndK(Z) for multiplication by m in Z.

Suppose that we are given the ring embedding

i : OE →֒ EndK(Z) ⊂ End(Z)

such that 1 ∈ OE goes to the identity automorphism 1Z of Z. In light
of (16), i(ηq) : Z → Z and i(η′) : Z → Z are isogenies and the kernel
ker(i(ηq)) of i(ηq) lies in Z[p]. In addition,

ker(i(ηq)) = i(η′)(Z[p]) ⊂ Z[p]. (17)

Indeed, since ηqη
′ = p, we have i(ηq)i(η

′) = pZ and

i(η′)(Z[p]) ⊂ ker(i(ηq)).

Conversely, suppose that z ∈ ker(i(ηq)). Since i(η′) is an isogeny, it is
surjective and therefore there is z̃ ∈ Z(Ka) such that i(η′)(z̃) = z. This
implies that

0 = i(ηq)(z) = i(ηq)i(η
′)z̃ = pZ z̃ = pz̃.

It follows that z̃ ∈ Z[p] and therefore ker(i(ηq)) ⊂ i(η′)(Z[p]), which
ends the proof of (17).

Let us put

δ := i(ζq) ∈ EndK(Z) ⊂ End(Z). (18)

Remark 5.1. (i) Since ηq = 1 − ζq, we get i(ηq)) = 1Z − δ and
therefore

ker(i(ηq)) = {z ∈ Z(Ka) | δ(z) = z} =: Zδ. (19)
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(ii) Since ker(i(ηq)) is a subgroup of Z[p], it carries the natural
structure of a Fp-vector space. In other words, ker(i(ηq)) is a
Fp-vector subspace of Z[p].

(iii) Since the endomorphism i(ηq) is defined over K, ker(i(ηq)) is
a Gal(K)-invariant subspace of Z[p]. The action of Gal(K) on
ker(i(η)) gives rise to the natural linear representation

ρη = ρη,Z : Gal(K) → AutFp
(ker(i(ηq))), (20)

σ 7→ {z 7→ σ(z) ∀z ∈ ker(i(ηq)) ⊂ Z[p] ⊂ Z(Ks)} ∀σ ∈ Gal(K).

Lemma 5.2. φ(q) = [E : Q] divides 2dim(Z) = 2g and ker(i(ηq)) is a
Fp-vector space of dimension

hE :=
2dim(Z)

[E : Q]
=

2g

φ(q)
.

Proof. By a result of Ribet [19, Prop. 2.2.1 on p. 769], the Zp-Tate
module Tp(Z) of Z is a free module over the ring

Zp[δ] = i(OE)⊗ Zp
∼= Z[ζq]⊗ Zp = Zp[ζq]

of rank hE = 2g/φ(q). (In particular, hE is an integer.) This im-
plies that the Zp[δ]-module Z[p] = Tp(Z)/pTp(Z) is isomorphic to
(Zp[δ]/p)

hE . It follows from (17) that the Fp-vector space

ker(i(ηq)) ∼= (η′Zp[ζq]/p)
hE =

(η′Zp[ζq]/η
′ηqZp[ζq])

hE = (Zp[ζq]/ηqZp[ζq])
hE = FhE

p .

This proves that ker(i(ηq)) is a Fp-vector space of dimension hE . �

Let Λ be the centralizer of i(OE) in End(Z). Clearly, i(OE) lies in
the center of Λ. It is also clear that

Λ(ker i(ηq)) ⊂ ker(i(ηq)),

which gives rise to the natural homomorphism of O/ηqO = Fp-algebras

κ : Λ/i(ηq)Λ → EndFp
(ker i(ηq)), u+i(ηq)Λ 7→ {z 7→ u(z)} ∀z ∈ ker i(ηq).

(21)

Proposition 5.3. The homomorphism κ defined in (21) is injective.

Proof. Suppose that u ∈ Λ and u(ker i(ηq)) = {0}. We need to prove
that u ∈ i(ηq)Λ. In order to do that, notice that the endomorphism of
Z

v := i(η′) u = u i(η′) ∈ Λ ⊂ End(Z)

kills Z[p], because

v(Z[p]) = u i (η′)(Z[p]) = u (i (η′)Z[p]) = u
(

ker i(ηq)
)

= {0}.
This implies that there is ṽ ∈ End(Z) such that v = pṽ. Since v
commutes with i(OE), ṽ also commutes with i(OE), i.e., ṽ ∈ Λ. We
have

i(η′)i(ηq)ṽ = pṽ = v = i(η′)u.
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This implies that in End(Z)

i(η′)
(

i(ηq)ṽ − u
)

= 0.

Multiplying it by i(ηq) from the left and taking into account that
i(ηq)i(η

′) = i(p), we get

p
(

i(ηq)ṽ − u
)

= 0

in End(Z). It follows that i(ηq)ṽ = u. Since ṽ ∈ Λ, we are done. �

Remark 5.4. (i) Since Z is defined over K, one may associate
with every u ∈ End(Z) and σ ∈ Gal(K) an endomorphism
σu ∈ End(Z) such that

σu(z) = σu(σ−1z) ∀z ∈ Z(Ka). (22)

(ii) Recall that i(OE) ⊂ EndK(Z) consists of K-endomorphisms of
Z. It follows that if u ∈ End(Z) commutes with i(OE) then

σu
commutes with i(OE) for all σ ∈ Gal(K). In other words, if
u ∈ Λ then σu ∈ Λ for all σ ∈ Gal(K).

(iii) Since OE = Z[ζq], we have i(OE) = Z[δ]. It follows that Λ
coincides with the centralizer of δ in End(Z).

Proposition 5.5. The image R := κ(Λ/ηqΛ) is a Gal(K)-normal sub-
algebra of EndFp

(ker i(ηq)).

Proof. Let u ∈ Λ. Then

ū := κ(u+ ηqΛ) ∈ R ⊂ EndFp
(ker i(ηq)),

ū : z 7→ u(z) ∀z ∈ ker i(ηq).

Then σu ∈ Λ for all σ ∈ Gal(K) and

σu = κ(σu+ ηqΛ) ∈ EndFp
(ker i(ηq)),

σu : z 7→ σuσ−1(z) = ρη(σ)uρη(σ)
−1(z) = ρη(σ)ūρη(σ)

−1(z).

In other words, for each ū ∈ R

ρη(σ)ūρη(σ)
−1 ∈ R ∀σ ∈ Gal(K).

This proves that R is Gal(K)-normal. �

Remark 5.6. (i) Extending i by Q-linearity, we get a Q-algebra
embedding

E = OE ⊗Q → End(Z)⊗Q =: End0(Z), u⊗ c 7→ cu ∀u ∈ O, c ∈ Q

that we continue to denote by i. Clearly, i(E) coincides with
the Q-subalgebra Q[δ] of End0(Z) generated by δq. Clearly,
i : E → Q[δ] is a field isomorphism of number fields, and i(OE)
is the ring of integers in the number field Q[δ].
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(ii) Let us consider the Q-subalgebra

H = Λ⊗Q ⊂ End(Z)⊗Q = End0(Z).

Then the center of H contains i(O)⊗Q = Q[δ]. In other words,
H is a Q[δ]-algebra of finite dimension.

(iii) We have

Λ = H ∩ End(Z). (23)

where the intersection is taken in End0(Z). (Here we identify
End(Z) with End(Z) ⊗ 1 in End0(Z).) Indeed, the inclusion
Λ ⊂ H ∩ End(Z) is obvious. Conversely, suppose that u ∈
H ∩ End(Z). Then u ∈ End(Z) and mu ∈ Λ for some positive
integer m. This means that

(mu)δ = δ(mu),

which means that m(uδ − δu) = 0 in End(Z). It follows that
uδ−δu = 0, i.e., u ∈ Λ. It follows that H∩End(Z) ⊂ Λ, which
ends the proof of (23).

Proposition 5.7. (i) If the Gal(K)-module ker i(ηq) is central sim-
ple then H is a central simple Q[δ]-algebra.

(ii) If the Gal(K)-module ker i(ηq) is very simple then either

H = Λ⊗Q = i(E) = Q[δ], Λ = i(OE) = Z[δ]

or H = Λ⊗Q is a central simple Q[δ]-algebra, whose dimension
is the square of 2dim(Z)/[E : Q] = 2g/φ(q).

Proof. (i) The central simplicity implies that the Gal(K)-normal
subalgebra

R = κ(Λ/ηΛ) ∼= Λ/ηΛ

is a central simple Fp-algebra and therefore is isomorphic to the
matrix algebra Matd(Fp) of a certain size d. Applying Lemma
2.3 to O = i(OE), the maximal ideal m = i(ηqOE) and the
residue field k = Fp, we conclude that H is a central simple
Q[δq]-algebra.

(ii) The very simplicity implies that either Λ/ηqΛ = Fp or

Λ/ηΛ ∼= EndFp
(ker i(ηq)) ∼= MathE

(Fp).

In the latter case, Lemma 2.3 tells us that H is a central simple
Q[δ]-algebra of dimension h2

E .
In the former case, Lemma 2.3 tells us that H is a central

simple Q[δ]-algebra of dimension 1, i.e., H = Q[δ]. Hence,

Z[δ] ⊂ Λ ⊂ Q[δ].

Since Z[δ] ∼= Z[ζq] is integrally closed and Λ is a free Z-module
of finite rank, Z[δ] = Λ.

�
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6. Cyclic covers and Jacobians

Hereafter we fix an odd prime p.
Let us assume thatK is a subfield of C. We writeKa for the algebraic

closure of K in C and write Gal(K) for the absolute Galois group
Aut(Ka/K). We also fix in Ka a primitive pth root of unity ζ = ζp.

Let f(x) ∈ K[x] be a separable polynomial of degree n ≥ 4. We
write Rf for the n-element set of its roots and denote by L = Lf =
K(Rf ) ⊂ Ka the corresponding splitting field of f(x). As usual, the
Galois group Gal(L/K) is called the Galois group of f and denoted
by Gal(f). Clearly, Gal(f) permutes elements of Rf and the natural
map of Gal(f) into the group Perm(Rf ) of all permutations of Rf is
an embedding. We will identify Gal(f) with its image and consider it
as the certain permutation group of Rf . Clearly, Gal(f) is transitive
if and only if f is irreducible in K[x]. Therefore the Gal(f)-module

(F
Rf
p )00 is defined. The canonical surjection

Gal(K) ։ Gal(f)

provides (F
Rf
p )00 with the canonical structure of the Gal(K)-module

via the composition

Gal(K) ։ Gal(f) ⊂ Perm(Rf ) ⊂ Aut((F
Rf
p )00).

Let us put

Vf,p := (F
Rf
p )00. (24)

Let C = Cf,p be the smooth projective model of the smooth affine
K-curve

yp = f(x).

The genus
g = g(C) = g(Cf,p)

of C is (p− 1)(n− 1)/2 if p does not divide p and (p− 1)(n− 2)/2 if
it does ([16], pp. 401–402, [30], Prop. 1 on p. 3359, [21], p. 148).

Assume that K contains ζ . There is a non-trivial biregular automor-
phism of C

δp : (x, y) 7→ (x, ζy).

Clearly, δpp is the identity selfmap of C.
Let

J (f,p) := J(C) = J(Cf,p)

be the Jacobian of C. It is a g-dimensional abelian variety defined over
K and one may view δp as an element of

Aut(C) ⊂ Aut(J(C)) ⊂ End(J(C))

such that
δp 6= Id, δpp = Id

where Id is the identity endomorphism of J(C). Here End(J(C)) stands
for the ring of all Ka-endomorphisms of J(C). As usual, we write
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End0(J(C)) = End0(J (f,p)) for the corresponding Q-algebra End(J(C))⊗
Q.

Recall (4) that there is a ring embedding

ip,f : Z[ζp] ∼= Z[δp] ⊂ End(J (f,p)), ζp 7→ δp.

Let us put

J (f,p)(ηp) =: ker(ip,f(ηp)) ⊂ J (f,p)(Ka) (25)

where ηp = 1− ζp ∈ Z[δp] (Section 5).

Remark 6.1. Let
Λ := Endδp(J

(f,p))

be the centralizer of δp in End(J (f,p)). Clearly,

H := Λ⊗Q ⊂ End(J (f,p))⊗Q ⊂ End0(J (f,p))

is the centralizer of Q[δp] in End0(J (f,p)).

Theorem 6.2 (Prop. 6.2 in [21], Prop. 3.2 in [23]). There is a canon-
ical isomorphism of the Gal(K)-modules

J (f,p)(ηp) ∼= Vf,p.

Remark 6.3. Clearly, the natural homomorphism Gal(K) → AutFp
(Vf,p)

coincides with the composition

Gal(K) ։ Gal(f) ⊂ Perm(Rf ) ⊂ Aut
(

(F
Rf
p )00

)

= AutFp
(Vf,p).

Corollary 6.4. (i) If the Gal(f)-module Vf,p is central simple then
the Gal(K)-module J (f,p)(ηp) is central simple and H = Λ ⊗Q

is a central simple Q[δp]-algebra.
(ii) If the Gal(f)-module Vf,p is very simple then the Gal(K)-module

J (f,p)(ηp) is very simple and either Λ = i(O) or H = Λ⊗Q is a
central simple Q[δp]-algebra, whose dimension is the square of
2dim(J (f,p))/(p− 1).

Proof. It follows from Remark 4.2(ii) combined with Theorem 6.2 that
if the Gal(f)-module Vf,p is central simple (resp. very simple) then the
Gal(K)-module J (f,p)(ηp) (defined in (25)) is central simple (resp. very
simple). Now the desired result follows readily from Proposition 5.7
applied to Z = J (f,p), q = p, and i = ip,f . �

The following assertion was proven in [37, Th. 3.6].

Theorem 6.5. Suppose that n ≥ 4. Assume that Q[δp] is a maximal
commutative subalgebra of End0(J (f,p)).

Then End0(J (f,p)) = Q[δp] ∼= Q(ζp) and therefore End(J (f,p)) =
Z[δp] ∼= Z[ζp].

Theorem 6.6. Let p be an odd prime and ζ ∈ K. Suppose that the

Gal(f)-module (F
Rf
p )00 enjoys one of the following properties.
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(i) The Gal(f)-module Vf,p = (F
Rf
p )00 is very simple.

(ii) The Gal(f)-module Vf,p = (F
Rf
p )00 is central simple. In addi-

tion, either n = p+ 1, or n− 1 is not divisible by p.

Then End0(J (f,p)) = Q[δp] and End(J (f,p)) = Z[δp].

Proof of Theorem 6.6. In light of Theorem 6.5, it suffices to check that
Q[δp] coincides with its own centralizer in End0(J (f,p)). Recall that
J (f,p) is a g-dimensional abelian variety defined over K.

The properties of the Gal(f)-module (F
Rf
p )00 and the integers n, p im-

ply (thanks to Remark 4.2(ii)) that either the Gal(K)-module J (f,p)(ηp)
is very simple, or the following conditions hold.

(a) The Gal(K)-module J (f,p)(ηp) is central simple.
(b) Either n = p+ 1, or n− 1 is not divisible by p.

In all the cases the normal Fp-subalgebra R ∼= Λ/ηpΛ is isomorphic to
the matrix algebra Matd(Fp) for some positive integer d.

Applying Corollary 5.7, we conclude that H = ΛQ = Λ ⊗ Q is a
central simple Q[δp]-algebra of dimension d2 for some positive integer
d. In addition, if the Gal(K)-module J (f,p)(ηp) is very simple, then
either

d = 1, H = Q[δp],Λ = Z[δp]

or

d = 2g/(p− 1).

According to Remark 2.2(vi), d 6= 2g/(p − 1). So, in the very simple
case H = Q[δp],Λ = Z[δp].

Now suppose that J (f,p)(ηp) is not very simple. Then either n = p+1
or n−1 is not divisible by p. It follows from Remark 2.2(iv) that d = 1.
This implies that H = Q[δp]. Therefore

Z[δp] ⊂ Λ ⊂ Q[δp].

This implies that Λ = Z[δp] and therefore the centralizer of Q[δp] in
End0(J (f,p)) coincides with Λ⊗Q = Q[δp].

�

Theorem 6.7. Let n ≥ 5 be an integer, p an odd prime, and K con-
tains a primitive pth root of unity. Let us put N := n − 1 if p does
not divide n and N := n − 2 if p | n. Suppose that the Galois group
Gal(f) of f(x) contains a subgroup H such that the representation of

H in (F
Rf
p )00 is absolutely irreducible. Assume additionally that

(i) the index of every maximal subgroup of H does not divide N .
(ii) Either n = p+ 1, or n− 1 is not divisible by p.

Then End0(J (f,p)) = Q[δp] and End(J (f,p)) = Z[δp].
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Proof of Theorem 6.7. Enlarging K if necessary, we may and will as-
sume that H = Gal(f). It follows from Proposition 4.4 that the abso-

lutely simple H-module (F
Rf
p )00 is central simple. Applying Theorem

6.6, we conclude that End0(J (f,p)) = Q[δp] and End(J (f,p)) = Z[δp]. �

Remark 6.8. See [5, Sect. 7.7] and [17] for the list of doubly transitive
permutation groups H ⊂ Perm(B) and primes p such that the H-
module (FB

p )
00 is (absolutely) simple. (See also [22, Sect. 4], [4, Main

Theorem] and [15].)

7. Jacobians of cyclic covers of prime degree p

Proof of Theorem 1.2. Enlarging K if necessary, we may and will as-
sume that

H = Gal(f) ⊂ Perm(Rf ).

Since p > n, the prime p divides neither n nor n− 1. In particular,

(F
Rf
p )00 = (F

Rf
p )0.

In light of Remark 3.1 applied to B = Rf and G = H , the double

transitivity ofH implies that theH-module (F
Rf
p )0 is absolutely simple.

Now the desired result follows readily from Theorem 6.7. �

Proof of Theorem 1.3. Assume that n ≥ 5 and Gal(f) = Perm(Rf )
or Alt(Rf ). Enlarging K if necessary, we may assume that Gal(f) =
Alt(Rf ). Taking into account that Alt(Rf) is non-abelian simple while
the field extension K(ζ)/K is abelian, we conclude that the Galois
group of f over K(ζ) is also Alt(Rf ). (In particular, f(x) remains
irreducible over K(ζ).) So, in the course of the proof of Theorem 1.3,
we may assume that ζ ∈ K and Gal(f) = Alt(Rf ).

It is well known that the index of every maximal subgroup of Alt(Rf) ∼=
An is at least n; notice that

n > N = dimFp
(Vf,p) = dimFp

(

(FB
p )

00
)

.

(Recall that N = n − 1 or n − 2.) By Theorem 4.7(iv), the Gal(f)-
module Vf,p = (FB

p )
00 is central simple. It is very simple if either n > 5

or p ≤ 5, thanks to Theorem 4.7(ii). On the other hand, if n = 5 and
p > 5 then n − 1 is not divisible by p. Now the desired result follows
readily from Theorem 6.6.

�

Proof of Theorem 1.6. Since Mn, HS and Co3 are simple nonabelian
groups, replacing K by K(ζ), we may and will assume that ζ ∈ K.
Now the desired result follows readily from Theorem 6.7 combined with
Theorem 4.9 and Proposition 4.10.

�
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Proof of Theorem 1.8. Enlarging K, we may assume that Gal(f) =
H ∼= G(q). Since G(q) is a simple nonabelian group, replacing K by
K(ζ), we may and will assume that ζ ∈ K. In light of [17, Table 1],
our conditions on H and p imply that the H-module Vf,p is absolutely
simple.

Case L2. It follows from Theorem 4.11 that the Gal(f)-module

(F
Rf
p )00 = Vf,p is central simple.
On the other hand, if n − 1 is divisible by p then p = ℓ, because

n−1 = (q+1)−1 = q which is a power of the prime number ℓ. Hence,
our assumptions imply that n = q+ 1 = p+ 1. So, either n− 1 is not
divisible by p or n = p + 1. Now we may apply Theorem 6.6, which
gives us End0(J (f,p)) = Q[δp] and End(J (f,p)) = Z[δp].

Case Lmq. It follows from a result of Guralnick and Tiep [9, Th.
1.1] that every nontrivial projective representation of Gal(f) = H =
Lm(q) in characteristic p has dimension ≥ dimFp

(Vf,p). In light of [35,
Cor. 5.4], the Gal(f)-module Vf,p is very simple. Now the desired result
follows readily from Theorem 6.7.

Case U3. It follows readily from the Mitchell’s list of maximal
subgroups of U3(q) ([10, p. 212-213], [8, Th. 6.5.3 and its proof, pp.
329-332] that the index of every maximal subgroup of U3(q) is greater
or equal than

q3 + 1 = n > N

where N = dimFp
(Vf,p) is either n− 1 = q3 or n− 2 = q3 − 1. On the

other hand, n − 1 = q3 is a power of the prime ℓ and therefore is not
divisible by the prime p, since ℓ 6= p. Now the desired result follows
readily from Theorem 6.7.

Case Sz. It follows from the classification of subgroups of Sz(q) [11,
Remark 3.12(e) on p. 194] that every maximal subgroup of Sz(q) has
index ≥ q2 + 1 = n. Since n − 1 = q2 is a power of 2, the odd prime
p does not divide n − 1. Now the desired result follows readily from
Theorem 6.7.

Case Ree. Our conditions on p imply that p 6= 3. Since n− 1 = q2

is a power of 3, the prime p does not divide n− 1. It follows from the
classification of subgroups of Ree(q) [14, Th. C] that every maximal
subgroup of Sz(q) has index ≥ q3 + 1 = n. (See also [6, Remark 5.4].)
Now the desired result follows readily from Theorem 6.7. �

8. Jacobians of cyclic covers of degree q

In this section we discuss the case when q = pr > 2 where r is
any positive integer, K is a subfield of C and f(x) ∈ K[x] a degree n
polynomial without repeated roots. We assume that n ≥ 5 and either
q | n or p does not divide n. Let J(Cf,q) be the Jacobian of the curve
Cf,q and δq the automorphism of J(Cf,q), whicch are defined in the
beginning of Section 1.
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Remark 8.1. One may define a positive-dimensional abelian subvari-
ety

J (f,q) := Pq/p(δq)(J(Cf,q))

of J(Cf,q) [34, p. 355] that is defined over K(ζq) and enjoys the follow-
ing properties [34] (see also [39]).

(i) If q = p then J (f,p) = J(Cf,p) (as above).
(ii) J (f,q) is defined over K(ζq).
(iii) J (f,q) is a δq-invariant abelian subvariety of J(Cf,q). In addition

Φq(δq)(J
(f,q)) = 0 where

Φq(t) =

p−1
∑

i=0

tip
r−1 ∈ Z[t]

is the qth cyclotomic polynomial. This gives rise to the ring
embedding

jq,f : Z[ζq] →֒ End(J (f,q))

under which ζq goes to to the restriction of δq to J (f,q), which
we denote by δq ∈ End(J (f,q)). Then the subring Z[δq] of
End(J (f,q)) is isomorphic to Z[ζq] (via jq,f), and theQ-subalgebra
Q[δq] of End

0(J (f,q)) is isomorphic to Q(ζq).
(iv) If p does not divide n then there is an isogeny of abelian varieties

J(Cf,q) → J(Cf,q/p)× J (f,q)

that is defined overK(ζq). (Notice that q/p = pr−1, so J(Cf,q/p) =
J(Cf,pr−1).) By induction, this gives us an isogeny of abelian
varieties

J(Cf,q) → J(Cf,p)×
r
∏

i=2

J (f,ri) =
r
∏

i=1

J (f,ri)

that is also defined over K(ζq) [34, Cor. 4.12].
(v) Suppose that ζq ∈ K. Then the Gal(K)-submodule ker(1− δq)

of J (f,q)(Ka) is isomorphic to Vf,p. (See [34, Lemma 4.11], [39,
Th. 9.1].) In particular, ker(1− δq) is a N -dimensional vector
space over Fp where

– N = n− 1 if p does not divide n;
– N = n− 2 if p divides n and q divides n.

(Here 1 stands for the identity automorphism of J (f,q).)
(vii) Let us consider the action of the subfield Q[δq] of End

0(J (f,q))
on Ω1(J (f,q)). Let i < q be a positive integer that is not divisible
by p and σi : Q[δq] →֒ C be the field embedding that sends δq

to ζ−i
q . Clearly,

Ω1(J (f,q)) = ⊕iΩ
1(J (f,q))σi
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where Ω1(J (f,q))σi
are the corresponding weight subspaces (see

Section 2). Let us consider the nonnegative integers

nσi
:= dimC(Ω

1(J (f,q))σi
).

(1) If p does not divide n then

nσi
=

[

ni

q

]

[34, Remark 4.13]. In addition, the number of i with nσi
6=

0 is strictly greater than

(p− 1)pr−1

2
=

φ(q)

2
=

[Q[δq] : Q]

2

[34, p. 357-358]).
(2) If p is odd and q divides n then the GCD of all nσi

’s is 1
[39, Lemma 8.1(D].

(3) If p is an odd prime that does not divide n, and either
n = q+1 or n− 1 is not divisible by q, then n the GCD of
all nσi

’s is 1 [39, Lemma 8.1(D].
(viii) If p is odd and Q[δq] is a maximal commutative subalgebra of

End0(J (f,q)) then

End0(J (f,q)) = Q[δq], End(J (f,q)) = Z[δq]

([34, Th. 4.16], [39, Th. 8.3]).

Theorem 8.2. Let n ≥ 5 be an integer, p an odd prime, and K con-
tains a primitive qth root of unity. Suppose that either p does not divide
n or q divides n.

Let us put N := n− 1 if p does not divide n and N := n− 2 if q | n.
Suppose that the Galois group Gal(f) of f(x) contains a subgroup H

such that the representation of H in
(

F
Rf
p

)00

= Vf,p is absolutely irre-

ducible. Assume additionally that the index of every maximal subgroup
of H does not divide N and one of the following conditions holds.

(i) The representation of H in
(

F
Rf
p

)00

= Vf,p is very simple.

(ii) Either p does not divide n and n − 1 is not divisible by q, or
n = q + 1, or q | n.

Then End0(J (f,q)) = Q[δq] and End(J (f,q)) = Z[δq]. In particular,
J (f,q) is an absolutely simple abelian variety.

Proof. Enlarging K if necessary, we may and will assume that H =
Gal(f). It follows from Proposition 4.4 that the absolutely simple H-

module (F
Rf
p )00 = Vf,p is central simple.

Recall (Remark 8.1(v)) that the Gal(K)-module ker(1 − δq) is iso-
morphic to Vf,p and therefore is also central simple. In addition, it is
very simple if and only if the H-module Vf,p is very simple.
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Let Λ be the centralizer of Z[δq] in End(J (f,q)) and

H = ΛQ := Λ⊗Q

the centralizer of Q[δq] in End0(J (f,q)). Applying Proposition 5.7 to

Z = J (f,q), E = Q[δq], i = jq,f , OE = Z[δq],

we conclude that H = ΛQ = Λ⊗Q is a central simple Q[δq]-algebra of
dimension d2 for some positive integer d.

In addition, if the Gal(K)-module ker(1 − δq) is very simple, then
either

d = 1, H = Q[δq],Λ = Z[δq]

or

d = N =
2g

φ(q)
= dimFp

(Vf,p)

where

g = dim(J (f,q)), φ(q) = [Q(ζq) : Q] = [Q[δq] : Q].

In light of Remark 8.1(i-ii) combined with Proposition 5.7(ii), d 6=
2g/[Q[δq] : Q]. So, in the very simple case H = Q[δq],Λ = Z[δq].

Now suppose that ker(1 − δq) is not very simple. Then Vp,f is not
very simple. This implies that either n = q + 1, or p does not divide
n and n − 1 is not divisible by q or q | n. It follows from Proposition
5.7(i) combined with Remark 8.1(vii) that d = 1. This implies that
H = Q[δq]. Therefore

Z[δq] ⊂ Λ ⊂ Q[δq].

This implies that Λ = Z[δq] and therefore H = Q[δq] is a maximal
commutative subalgebra of End0(J (f,q)) Now the desired result follows
from Remark 2.2(viii). �

Proof of Theorems 1.10 and 1.9. Enlarging K if necessary, we may as-
sume that K contains a primitive qth root of unity, and

• Gal(f) = Alt(Rf ) =: H in the case of Theorem 1.10;
• Gal(f) = H in the case of Theorem 1.9.

It follows from Theorem 8.2 that End0(J (f,q)) = Q[δq] ∼= Q(ζq) and
J (f,q) is an absolutely simple abelian variety for q = pr when r is any
positive integer. This implies that for distinct positive integers i and
j there are no nonzero homomorphisms between J (f,pi) and J (f,pj), be-
cause they are absolutely simple abelian varieties with non-isomorphic
endomorphism algebras. This implies that the endomorphism alge-
bra End0(Y ) of the product Y :=

∏r
i=1 J

(f,ri) is
∏r

i=1Q(ζpi), whose
Q-dimension is q − 1.

In light of Remark 8.1(iv), if p does not divide n then Y is isogenous
to J(Cf,q). It follows that End

0(J(Cf,q)) also has Q-dimension (q− 1).
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However, we know that the Q-algebra End0(J(Cf,q)) contains the Q-
subalgebra Q[δq] of Q-dimension (q − 1), thanks to (3). This implies
that

End0(J(Cf,q)) = Q[δq] ∼=
r
∏

i=1

Q(ζpi).

This ends the proof of Theorem 1.9.
Let us finish the proof of Theorem 1.10, following [34, Remark 4.3

and Proof of Th. 5.2 on p. 360]. It remains to do the case when q | n,
say, n = qm for some positive integer m. Since the case q = p was
already covered by already proven Theorem 1.3, we may assume that
q ≥ p2 ≥ 9 and therefore n ≥ 9. Recall that Gal(f) = Alt(Rf ) ∼= An.
Let α ∈ Ka be a root of f(x). Let us consider the overfield K1 = K(α)
of K. We have f(x) = (x − α)f1(x) ∈ K1[x] where f1(x) is a degree
(n − 1) irreducible polynomial over K1 with Galois group An−1. Let
us consider the polynomials

h(x) = f1(x+ α), h1(x) = xn−1 ∈ K1[x]

of degree n − 1 ≥ 9 − 1 = 8. Notice that n − 1 is not divisible by
p and the Galois group of h1(x) over K1 is still An−1. The standard
substitution

x1 =
1

x− α
, y1 =

y

(x− α)m

establishes a birational isomorphisms between the curves Cf,q and Ch1,q

[30, p. 3359]. This implies that the Jacobians J(Cf,q) and J(Ch1,q) are
isomorphic and therefore their endomorphism algebras are also isomor-
phic. Applying to J(Ch1,q) the already proven part of Theorem 1.10, we
conclude that the Q-algebra End0(J(Ch1,q)) has Q-dimension (q − 1).
This implies that End0(J(Cf,q)) also has Q-dimension q − 1. How-
ever, we know that End0(J(Cf,q)) contains the Q-subalgebra Q[δq] of
Q-dimension (q − 1) (3). This implies that

End0(J(Cf,q)) = Q[δq] ∼=
r
∏

i=1

Q(ζpi).

This ends the proof of Theorem 1.10.
�
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