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ON THE UNIFORM CONVERGENCE OF CONTINUOUS
SEMIGROUPS

MANUEL D. CONTRERAS, CARLOS GOMEZ-CABELLO, AND LUIS RODRIGUEZ-PIAZZA

ABSTRACT. Let Q be a region in the complex plane C and let {®;};>¢ be a continuous
semigroup of functions on €2; that is, ®;:  — Q is holomorphic for every ¢ > 0, ®¢(2) =
z, for every z € Q, &, 0 &g = Oy, for every s, t > 0, and

Di(z) >z, astgoesto0T,

uniformly on compact subsets of ). Despite this definition only requires the uniform
convergence on compact subsets, P. Gumenyuk proved in 2014 that, when 2 is the unit
disc, the convergence is uniform on the whole D. In this paper, we enhance Gumenyuk’s
result by proving that for every continuous semigroup {®;};>0 on D we have

sup [®(2) — z| = O(Vt), t—0F.
z€D

In addition, we provide an example showing that O(y/f) is the best possible rate of
uniform convergence valid for all semigroups on D.

When € is the right half-plane C, we consider semigroups {®;} with oo as its Denjoy-
Wolff point. It is not difficult to show that Gumenyuk’s result is no longer true for these
semigroups. Our second result characterizes when such continuous semigroups converges
uniformly to the identity, as ¢ goes to zero, in terms of their infinitesimal generators.
Namely, this convergence holds if and only if the infinitesimal generator of the semigroup
is bounded in the half-plane {z € C: Rez > 1}. In this case, we can also prove that the
rate of convergence is again O(v/1), as t goes to zero.

An example of application of this result is when the semigroup is included in the
Gordon-Hedenmalm class (the one which produces bounded composition operators on
Hardy spaces of Dirichlet series), where we always have uniform convergence.

An important ingredient in the proofs of these results is the use of harmonic measures,
which we have done through a classic result of M. Lavrentiev.
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1. INTRODUCTION

The study of continuous semigroups in the unit disc D and in the right half-plane C,
started in the early 1900s. The work [2]|, appeared in 1978, due to Berkson and Porta,
meant a renewed interest in the study of continuous semigroups. Let us recall that,
given a domain €2 in the complex plane, a continuous semigroup of holomorphic self-
maps of { —or simply a continuous semigroup in Q- {®;} is a continuous homomorphism
of the real semigroup [0,400) endowed with the Euclidean topology to the semigroup
under composition of holomorphic self-maps of {2 endowed with the topology of uniform
convergence on compacta. It was proved in 2] that a continuous semigroups are exactly
the flows of a holomorphic semicomplete vector field G on the domain 2; that is, the
functions ¢ — ®,(z) are the solutions of the Cauchy problems i(t) = G(z(t)),z(0) = z,
for all z € Q2.

In the last 40 years, the number of new results about this topic has grown significantly.
Its connection with dynamics has been explored in a number of papers, just to mention
some recent of them we cite [3, 4, 6, 8, 15]. The state of the art can be seen in [7]. It is
also worth mentioning other in-depth connection with operators theory via semigroups of
composition operators in Banach spaces of analytic functions (see, e.g., [1, 2, 5, 9, 10]).

Analyzing the semigroups of composition operators in the disc algebra, Diaz-Madrigal
and the first author [10] proved that when the functions of the semigroup have a continuous
extension to the boundary of the unit disc, then the functions ®; converge to the identity,
as t goes to 0, uniformly in the unit disc. In a remarkable paper published in 2014, P.
Gumenyuk [15, Proposition 3.2] removed the restriction of the continuous extension to
the boundary and proved that given a semigroup {®,} in the unit disc, the convergence
to the identity, as t goes to 0, is not only uniform on compacta but also uniform in whole
the unit disc. In this paper we improve such a result showing that

Theorem 1.1. Let {®,} be a continuous semigroup of analytic functions in the unit disc
D. Then, there exists C > 0 such that

(1.1) 1®,(2) — 2| < CVA,
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for all z € D and for all t > 0.

In Example 6.2, it is shown that this control is sharp in the sense that the function v/t
cannot be replaced by any function f such that f(t) = o(v/t), as t goes to 0F.

Gumenyuk’s theorem does not hold in the right half-plane (see Example 4.9). This
example raises the more general question about the semigroups in C, which happen
to converge uniformly to identity in such half-plane and, in particular, this opens the
way to analyze for which semigroups in the right half-plane the result holds. Our next
result provides a complete characterization in terms of its infinitesimal generator when
the Denjoy-Wolff point of the semigroup is co. As customary, we denote C. := {s € C:
Re(s) > e} and C; = Cy. The space H*(C,) consists on the bounded analytic functions
in C.. Namely, we obtain:

Theorem 1.2. Let H : C; — C, be a holomorphic function and denote by {®;} the
continuous semigroup whose infinitesimal generator is H. Then, the following statements
are equivalent:

(i) H € H*(C,), for some € > 0.
(i) H € H*(C,), for all e > 0.
(i) There ezist a constant K > 0 and €9 > 0 so that

K
sup |H(2)| < —, forall0 < e < ey.
ZGCE €

(iv) There exist two constants C > 0 and ty > 0 such that if 0 <t < ty, we have
|®,(2) — 2| < CVt, forall z € C,.

(v) {®:} converges to the identity map uniformly on C,, ast goes to zero.
(vi) There exists € > 0 such that {®;} converges to the identity map uniformly on C.,
as t goes to zero.

To the best of the authors’ knowledge, the study of continuous semigroups of analytic
functions susceptible of being developable with a Dirichlet series was initiated in [11]
(see also [12]). More specifically, the continuous semigroups of analytic functions in the
Gordon-Hedenmalm class G (see Definition 5.1) were studied there. This class, introduced
in [14], is the family of symbols giving rise to bounded composition operators in H?, the
Hilbert space of Dirichlet series that Hedenmalm, Lindqvist and Seip brought up in [16]. In
[11], the authors found an interesting phenomena: every continuous semigroup of analytic
functions in the class G happens to converge to the identity uniformly in half planes C.,
€ > 0. As a byproduct of above theorem we get:

Corollary 1.3. Let {®,} be a continuous semigroup in the Gordon-Hedenmalm class,
then {®;} converges to the identity map uniformly in the right half-plane.

The proof of Gumenyuk’s result hinges upon classical results of Geometric Function
Theory like the No-Koebe-Arcs Theorem and the existence of the Koenigs map of a
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semigroup. In our approach, the proofs of Theorems 1.1 and 1.2 depend strongly on good
descriptions of the infinitesimal generators of continuous semigroups. In the case of the
unit disc and the right half-plane, we use the Berkson-Porta formula (see Theorem 2.2 in
Section 2) and to prove Corollary 1.3 in the case of semigroups in the Gordon-Hedenmalm
class the fact that their infinitesimal generators are Dirichlet series with non-negative real
part (see Theorem 5.4 in Section 5). In the proofs, we also strongly use a result of M.
Lavrentiev [17] relating the behaviour of the length and the harmonic measure in the
boundary of Jordan domains.

The plan for the paper is the following. In the next section, we recall the notion of
semigroup and describe some results about its infinitesimal generator that will be needed
along the paper. Section 3 is devoted to state the result of Lavrentiev which appears to
be crucial in our proofs. Moreover, we rewrite it in terms of harmonic measures which
is more suitable in our reasoning. Section 4 is mainly devoted to the proof of Theorem
1.2, getting in Theorem 4.4 a stronger version of “(iii) implies (iv)” of Theorem 1.2. In
Section 5 we present definitions and the necessary results about Dirichlet series we need
to prove Corollary 1.3. Finally, the last section is engaged to prove Theorem 1.1 and we
provide an example showing that such a result is sharp.

Acknowledgements. The authors thank Athanasios Kouroupis for some significant
remarks on the previous version of Theorem 1.2 that have greatly improved its statement.

2. CONTINUOUS SEMIGROUPS

Given a simply connected domain €2 in the complex plane C, a continuous one-parameter
semigroup {®;}+>o of holomorphic self-maps of {2 —a continuous semigroup of €2 for short—
is a continuous homomorphism ¢ — &®; from the additive semigroup (Rx¢,+) of non-
negative real numbers to the semigroup (Hol(£2,€2), o) of holomorphic self-maps of 2 with
respect to composition, endowed with the topology of uniform convergence on compacta.
That is,

Definition 2.1. Let © be a domain in C and let {®;};>0 be a family of holomorphic
functions @, : Q@ — Q. We say that {®,};>¢ is a continuous semigroup if:
(i) Po(s) =s, s €9,
(i) For every t,u > 0, &, 0 &, = ;.
(iii) ®; — P¢ uniformly on compact subsets of Q as t — 07.

For the sake of simplicity, we simply write {®;} to denote {®;}:>o.

When € is either the unit disc or the right half-plane, if {®;} is not a group of elliptic
rotations, namely, it does not contain automorphisms of {2 with a fixed point in €2, then
there exists a unique point 7 € Q (the clousure in the Riemann sphere) such that ®,
converges uniformly on compacta, as t goes to 400, to the constant map z — 7. Such a
point 7 is called the Denjoy-Wolff point of {®,}. The semigroup is called elliptic if 7 € 2.
If 7 ¢ Q, then the semigroup is called non-elliptic.
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Berkson and Porta proved in [2] the existence of the following limit
d,(s) —
(2.1) H(s) = lim M, for all s € Q2
t—0t t

and such limit is uniform on compact sets of €. In particular, H is holomorphic. Moreover,
t — ®.(s) is the solution of the Cauchy problem:
0D, (s)

ot

The function H is called the infinitesimal generator of the semigroup {®;}. There are
several nice descriptions of the holomorphic functions that are infinitesimal generators.
Maybe the most celebrated and useful one is due to Berkson and Porta, who proved the
following;:

Theorem 2.2. 2| Let H : D — C be a holomorphic function with H # 0. Then H is the
infinitesimal generator of a continuous semigroup {®;} if and only if there exists a unique
7 € D and a unique p : D — C holomorphic with Rep(z) > 0 such that the following
formula, known as the Berkson-Porta formula, holds

H(z)=(z—1)(Tz— 1)p(2).
In such a case, the point T coincides with the Denjoy- Wolff point of the semigroup {®;} .

(2.2)

= H(P(s)) and Pg(s) =s € Q.

In fact, they also proved, see |2, Theorem 2.6|, that H is the infinitesimal generator of
a continuous semigroup in the right half-plane with Denjoy-Wolff point oo if and only if
H(C,)cC,.

We refer the reader to [7] for all non-proven statements about continuous semigroups
that we will use throughout the paper.

3. PRELIMINARIES

A key tool in our arguments are harmonic measures. We first give the definition; see
e.g. |20, Chapter 4, Section 3|. Suppose that €2 is a domain in the complex plane with
non-polar boundary and F is a Borel subset of 0,,£2. The harmonic measure of F relative
to €2 is the generalized Perron-Wiener solution u of the Dirichlet problem for the Laplacian
in 2 with boundary values 1 on E and 0 on 0,2\ E. We will use the standard notation

u(z) =wa(z, E), ze€qQ.

The boundary of a simply connected domain €2 contains a continuum. Since every con-
tinuum is a non-polar set |20, Corollary 3.8.5|, harmonic measures are defined for €.
Throughout the paper the domains where harmonic measures are used will be simply
connected. In this more straightforward case, a good reference for the properties we will
use is [18] (see also [7]). Given E' C C, we denote by ¢(E) the outer linear measure of £
(see [18, page 129]). If E' is a Jordan arc, then ¢(E) is nothing but its length.
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Theorem 3.1 (Lavrentiev). [17] (see also [18, Proposition 6.11]|) Let Q be a simply con-
nected region in the complex plane such that Q@ O D and 0 is Jordan curve such that
L = 0(09) < oco. Consider f : D — Q a conformal representation satisfying f(0) = 0.
Then, for every € > 0, there exists 6 = d(e, L) > 0 such that for every A C 09, if
((A) <0, then ((f71(A)) <e.

In the setting of above theorem, Carathéodory Theorem guarantees that f extends to
a homeomorphism from D to Q (see [7, Theorem 4.3.3] or [18, Theorem 2.6]). For our
purposes, it is more useful to rewrite this theorem in terms of harmonic measures. Notice
that £(f~1(A)) = wp(0, f71(A)). Now, the conformal invariant character of the harmonic
measure yields wp(0, f71(A)) = wq(0, A). That is, ¢(f~'(A)) = wq(0,A). Taking this

into account, we have the following immediate consequence.

Corollary 3.2. There exists a constant p > 0 such that the following holds: Let a €
(0, +00). Consider a simply connected domain 2 in C such that OS2 is a Jordan curve
with £(0Y) < 4a and D(w,a/4) C Q for some w € Q. Then, wo(w, A) < 5, whenever A
is a measurable subset of 0Q with ((A) < pa.

Proof. Take p = 6(1/8,16)/4 the constant provided by Theorem 3.1. We may assume
that w = 0. Call Q = 2Q2. Notice that D C Q and E(@Q) < 16. Let A be a measurable

subset of 02 with E(A) < pa. Consider A = 1A C 8. Then E(A) < 4p = 6(1/8,16).
Therefore,

wo(0, A) = wg(0, A) < 1/8.

4. CONTINUOUS SEMIGROUPS IN THE RIGHT HALF-PLANE AND THE PROOF OF
THEOREM 1.2.

The main goal of this section is to prove Theorem 1.2. Previously, we present in
Theorem 4.4 an improvement of one of the implications in that result.

The growth rate of the modulus of the infinitesimal generator of a continuous semigroup
close to the imaginary axis is intimately related to the rate of convergence of the Re(®;(2))
to Re(z) as t goes to zero and, as we are about to see in Theorem 4.4, it is also deeply
linked to the ratio of convergence of {®,} to the identity map.

Before moving on, let us point out a fact which will be frequently used in this section
and, in particular, in the forthcoming lemma. Let H : C, — C, be the infinitesimal
generator of a continuous semigroup {®;} in C,. Then, we have that

d

ERe(@t( 2)) = ReH(®P(z)) >0, forall zeC,.

Therefore, the map ¢ — Re(P;(2)) is increasing.
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Lemma 4.1. Let 0 < a < 1. Let H : C,. — C, be the infinitesimal generator of a
continuous semigroup {®;} in Cy such that there exist a constant K > 0 and g9 > 0
satisfying

K
sup |H(z)| < —, forall0 <e < eo.
2€Ce e*

Then, there exists B = B(K) > 0 and ty = to(o) > 0 such that if t < ty, we have
[Re(®,(2)) — Re(z)| < Btts,  for all z € Cy.

Proof. Fix 0 < t < 2. We can assume that gy < 1. Take e = ¢ > 0 and choose z € Cs,.

If Re(®4(z)) < e, we are done, because Re(P,(2)) — Re(z) < e = t7+s. Assume then the
existence of 0 < ¢; = t1(2) < t such that Re(®,(z)) > ¢, for all u > t; and Re(®,(2)) < ¢
for every u < ;. Such t; exists thanks to the fact that u — Re(®,(z)) is non-decreasing
and continuous. Observe that ¢; could be 0 and, in this case, &, (2) — z = 0. Now,

Re(®:(2)) — Re(z) = /0 Re(H (P, (2)))du

_ /0 " Re(H(®y(2)))du + /t Re(H (@4 (2)))du.

Using the hypothesis on H, the definition of ¢; and, the choice of €, we find that

/O " Re(H(®,()))du + /t Re(H (®,(2)))du < Re(®, () — 2) + ot

K 1
et —t=(1+K)trs,
ga
and the conclusion follows. 0
Lemma 4.2. Let f : [c,d] CR — R be a C' function of Lipschitz constant K. Consider

g:le,d] — R given by g(x) = min{f(y) : y > x}. Then,

1) The function g is Lipschitz with constant K.

2) If g(x) < f(z), then ¢'(x) = 0.
3) If ¢'(z) exists and ¢'(x) > 0, then ¢'(x) = f'(x).

Proof. First, notice that ¢’(x) > 0, whenever such a value does exist, and g(z) < f(x),
for all x. For the first statement, consider 1, xs € [c,d] and, without loss of generality,
we assume 7 < zy. Take y; > x; such that f(y;) = g(x;), for j = 1,2. On the one hand,
if y; > o, then y; = yo and g(z1) = g(x2). On the other hand, if y; < x5, then

|9(z2) — g(z1)| = f(y2) — f(y1) < flz2) — f(y1) < K(22 — 1) < K(29 — 21).
So that ¢ is Lipschitz with constant K.
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For part b), notice that if g(z) < f(z), by continuity, there exists § > 0 such that

ye(ws—u;,?p—i-é) g(y) = ye(ﬂfl—rgx"r(s) f(y)
However, by the definition of g, this implies that ¢ is constant in such an interval and,
therefore, ¢'(z) = 0.

Consider z a point such that ¢'(x) exists and ¢’(z) > 0. Then, by b), we have that
g(x) > f(z). However, by the definition of g, g(z) < f(x). Therefore, f(z) = g(z). Now,
for some 6 > 0 small enough, either f(y) > g(y) for all y € Is = [x,x + J), either there
exists a sequence {y,} converging to x, y, > x for all n and such that f(y,) = g(y,) for
all n. If the second case holds, the conclusion follows since

fly) = fl@) _ . flye) = fl@) _ . 9() — 9(2)

y—at Yy—x n—00 Yp — X n—00 Y — X

= g'(2).

Therefore, let us assume that the first case occurs. Then, by the argument to prove
statement b), we would have that ¢ is constant in I;5. Therefore, the right-hand derivative
of g at the point  would be zero. Nonetheless, as ¢'(x) exists, the left-hand derivative
would also be zero, meaning that ¢’(xz) = 0, which contradicts the initial assumption on
x. U

Remark 4.3. According to |2, Theorem 2.6], the continuous semigroups {®;} in the right
half-plane with Denjoy-Wolff point oo are those whose infinitesimal generator H is a
holomorphic map in C, and such that H : C; — C,. The case in which the infinitesimal
generator H touches the boundary of C, this is, H(C,) N dC, # 0, corresponds to the
semigroup {®;} given by ®,(z) = z + iat, a € R, t > 0. The statements of Theorem 4.4
and Theorem 1.2 clearly hold for this case. Because of this, we shall exclude the case in
which H touches OC, in the statments of the theorems.

Theorem 4.4. Let 0 < a < 1. Let H: Cy — C, be a holomorphic function and denote
by {®;} the associated continuous semigroup. Suppose that there exist a constant K > 0
and 9 > 0 so that

K
sup |H(2)| < —, forall0 < e < gy.
ZE(CE Ea

Then, there ezist a constant A = A(eg, a, K) and a ty = to(go, K) > 0 such that if t < to,
we have

|Dy(2) — 2| < Atts,  forall z € C,.

Proof. Step I: Simplifications. By Lemma 4.1, there exist B = B(K) > 0 and ty = to(c) >
0 such that if ¢ < ty, then

(4.1) IRe(®,(2)) — Re(z)| < Bttr=, forall z € C,.
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Therefore, it is enough to show that there exist a constant A and to > 0 such that if
t < tg, then

Im(®,(2)) — Im(2)| < AtTa, forall z € C,.
Fix z € C, and 0 < t < ty. Let p be the universal constant provided in Corollary 3.2 and

take C7 > max{4,2/p}. Write a = |Im(P,(2)) — Im(z)|. Assume for the moment that
a < 2e9. We may suppose that

(4.2) Re(®y(z)) — Re(z) < C%Hm(@(z)) — Im(z)|,

otherwise taking A > BC; we are done. We shall carry out the proof for the case
Im(®;(z)) — Im(z) = a. The prove of the other case is done in a similar fashion. Define
the curve

v:[0,t] = C4
ur— O,(2).
We denote by v* the image of the interval [0, ¢] under «. Similarly, we consider the square
C ={s€C, :Re(z) <Re(s) <Re(z) +a, Im(z) < Im(s) < Im(z) + a}
and set w to be the centre of the square C. In fact, we can assume that the whole v* lies
in C. Indeed, define
ty = sup{u € (0,¢) : Im(P,(2)) < Im(z)},
ty = inf{u € (t1,¢) : Im(P,(2)) > Im(2) + a}.

Then, for all 7 € [t1, 5], Im(2) < Im(P,(2)) < Im(z) +a. Let zp = Oy, (2) and v =t — 1.
By the semigroup structure, ®,,(z) = ®,(2). Then,

a=1Im(Ps,(2)) — Im(Py, (2)) = Im( Py, 4, (Pr, (2))) — Im (P4, (2))
= Im(P,(z0)) — Im(zp).
On the other hand,
a =Im(®(2)) — Im(z).
Hence, if we prove that Im(®,(zp)) — Im(z) < Ay/v, the result will follow since
Im(®,(2)) — Im(2) = Im (P, (20)) — Im(2) < Avo < AVt

Hence, we assume that v* is in C. In order to ease the reading of the proof, we define
1

0 := Re(®:(2)) — Re(z). With this notation, (4.1) becomes § < BtT+«. By (4.2) and the

choice of C'; we have that

(4.3) d <a/C, <a/d

Also, clearly, Re(w) > a/2. Therefore, by hypothesis,
2K

(4.4 H(w)| < 22

a
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Step II: Construction of 2. We are going to consider the curve « : [0,¢t] — C, given by
a(u) = f(u) + ig(u), where f(u) = Re(y(u)) and g(u) = min{Im(v(s)) : s > u} which
satisfies the thesis from Lemma 4.2, so the imaginary part of the curve « is non-decreasing.
We shall also denote by a* to «([0,¢]). The curve a* divides the square C into two regions.
Let Q be the right hand-side region of the square (see Figure 1). By the definition of 9,
since § < a/4, we have that Re(w) > 0 + § and, consequently, D(w, a/4) C €2.

Py(z) Py(2)
Imz+a + o Imz+a +
e
w
Q
Imz Imz 1
z z
i i i
Rez Rez Rez+a

FIGURE 1. The domain €2 and its boundary.

For every Borel set £ C 09, we set w(E) = wq(w, E), where wq(w,-) is the harmonic
measure of € at the point w. We claim that

(4.5) w(a*)Zi and  £(09) < da.

Indeed, for E a Borel subset of 9C we set we(E) = we(w, E). Since this harmonic measure
is a probability measure, we(w, dC) = 1. Furthermore, by the invariance of the harmonic
measure under m/2-rotations, we have that we(w, Lj) = 1/4, where L;, stands for each of
the sides of the square C, j = 1,...,4. Let L; be the left vertical side of the square C. Let
I' =Ly U[z+ia,z+ ia + d]. Notice that OC \ I' = 0Q \ o*. Hence, by the Subordination
Principle of harmonic measures, we have that

we(w, 0C\T') > wq(w, 0N\ o).

Then,

w(a) = wo(w,a) =1 —wq(w, 2\ ") > 1 —we(w,dC\T') = we(w,I') > we(w, Ly) = }1
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We now show that £(0€2) < 4a. Since, Re and Im « are non-decreasing functions, we
have that

la) = /0 |’ (u)|du < /0 Re(a/(u))du + /0 ' Im(c/(u))du
= Re(Py(2) — 2) + Im(P(2) — 2) < d+a = ().
Thus, £(092) < 4a, as desired.

Step I1I: Application of Lavrentiev’s Theorem. We shall apply Corollary 3.2 to the domain

. . . a1+a
Q) and to a suitable subset A of 9€2. To this purpose, write n = 144. If n > 25—, then

5%K>¢at1

(4.6) a—M@WﬂJmag(p e

> we will reach a contradiction.

and the conclusion would follow. Otherwise, if n <
Consider the sets

2K
Ai={sea”:s¢~"}, Ay={sea" Ny :|H(9)| Sa—an}.

Define A = A; U A,. By the definition of the sets A;, Ay and Lemma 4.2

EVU:QAQ+A&)§/

a_l(A1)

|o/(u)|du—|—/ | (u)|du

a_l(.AQ)

géﬂmawmmm+/ 7' ()| du

a~1(A2)

a
——|—£a<pa,

<5+2K t <
- aan Cl 2

where in the last two inequalities we have used (4.3) and the choices of both 7 and (1,
respectively. Therefore, we are under the conditions of Corollary 3.2. Hence, the corollary
gives that w(A) < 1/8. This, together with (4.5), yields

(4.7) w(a\ A) >

ool —

Summing up, we have shown that there exists a large set, a* \ 4, meaning that that
w(a*\A) > 1/8, where the infinitesimal generator is large, in the sense that |H (w)| > 2£p),
for all w in such set. This fact will allow us to reach the desired contradiction in the next
step.

Step IV: Reaching the contradiction. The function Re(v/H) is positive and harmonic.
Observe also that if |arg(w)| < 7/4, we have that Re(w) > |w|/v/2. This is the reason
why we consider v/ H instead of H. We recall that w € C, /2. Hence, both the definition
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of harmonic measure and (4.4) respectively give

/ Re(v/H(s))dw(s) < / Re(y/H(s))dw(s) = Re (VH(w)) < V2
ar\A 80

On the other hand, by the previous observation, the definition of the set A, estimate (4.7)
and using that n = 144,

VI, o L R 8
/Q*\ARe(\/H /*\A f oo\ A) 2 25

Thus, we obtain the desired contradiction. Consequently, n > £ Z;:, (4.6) holds, and we

are done in case a < 2g¢ with A := max{BC}, (576K/p)1+%} and A(K) := A+ B.
Step V: Case a > 2¢y If a > 2¢, then take ¢ the smallest positive real number such
that

a' = Im(®y(2)) — Im(2) = 2
Then ' < t < ;. We have already proved that o’ < A(t )1+a Therefore, t > (2g0/A)te.

So we are done taking to < min{{, (2e0/A)"*}. O

Remark 4.5. In the above theorem, if &« = 0, then H € H*°(C,). That is, the infinitesimal
generator is bounded in the right half-plane C,. In such case, the semigroup converges

to the identity like O(¢). In fact, for a = 0, Theorem 4.4 is actually and equivalence.
Indeed, if

|D4(2) — 2| < At, forall z € Cy,
then, this together with (2.1) give

[H(2)| = lim

d,(2) —
M <A, forall zeC,.
t—0+ t

As we will see in Theorem 1.2, we also have an equivalence in Theorem 4.4 for oo = 1.

Remark 4.6. In connection with the previous remark, O(¢) is actually the best rate of
convergence one could expect. Indeed, every better convergence rate to the identity of
the semigroup {®;}, say O(t*), a > 1, would give the trivial semigroup. This follows
immediately from (2.1)

o _
|H(2)| < lmMSClimta’lzo, z e C,.
t—0+ t t—0+
Then, H(z) =0 for every z € C; and {®;} is the trivial semigroup.
Now we turn to the central theorem of this section. Before proving it, we establish the

following auxiliary lemma. Given a simply connected domain €2, we denote by pq the
pseudohyperbolic distance in 2.
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Lemma 4.7. Let z = x +iy,w = u+ 1w € Cy be such that pc, (z,w) <r < 1. Then,

—r 2rx
b —o| < .

Proof. Let A > 0. The map Ty : D — Cy, T\(2) = A= maps D(0,7), the euclidean disc
of centre 0 and radius r, to a euclidean disc of centre ¢ = A\(1 + r2)/(1 — r?) and radius
R = \2r/(1—r?). By the conformal invariance of the pseudohyperbolic distance, we have
that pc, (Th(a),T\(b)) = pp(a,b), for all a,b € D.

Suppose, z = A > 0. Then, {¢ € C; : pc, (X, () < r} is the image of the disc D(0,r)

1+
1—

a) u>x

under the map 7). Since pc, (2,w) < r, w belongs to the euclidean disc of centre A :z

and radius A

137;2, so we have that

1+7r? 2r 1—r
> A\ - = A :
Y= 1—1r2 147
Regarding part b), since z = A\, y = 0 and x = A. Therefore, as the centre of the disc
T(D(0,7)) lies on R, then the imaginary part of the elements in the disc is between —R

and R. This is,

2r
<R=\—
’U|— 1—7“2’

and the lemma follows for z real.
If z € C, we use the conformal invariance of pc, under the vertical translation w
w — 1y. 0

Lemma 4.8. For every ¢ > 0, we have that D(z,2¢/5) C D,(2,1/4) for all z € C., where
D(z,r) denotes the euclidean disc of centre x and radius r and D,(x,r) stands for the
corresponding pseudo-hyperbolic disc.

Proof. Set €y = Re(z) > e. Let ¢ = g¢/e > 1. Consider the disc D,(e,1/4), which is an
euclidean disc containing the point €. Take

1—1/4) 2
— min{e — ; D,(e.1/4)} =¢ (1 = Ze.
d = min{e — Re(w) : w € 9D,(e,1/4)} 5( 1+1/4> €
Then, D(e,d/c) C D(e,0) C D,(e,1/4). Now, taking a c-homothety, by the conformal
invariance of the pseudohyperbolic-metric, we have that D(eo,2¢/5) C D,(eo,1/4). Con-
sidering the necessary translation, we obtain that D(z,2¢/5) C D,(z,1/4), and the lemma
follows. U

Proof of Theorem 1.2. The implications (iii) implies (ii), (ii) implies (i), (iv) implies (v),
and (v) implies (vi) are all trivial. Now, (iii) implies (iv) follows from Theorem 4.4 with
a = 1. Therefore, it suffices to prove (vi) implies (i) and (i) implies (iii). We begin by
showing the latter one.

By hypothesis, the holomorphic function H is bounded in some half-plane. Hence,
there exists 9 > 0 so that |H(z)| < M for every z € C,,. Fix 0 < ¢ < gy. Let z € C.
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be such that Re(z) < gy. Consider the point zy = €y + ilm(z). Since H : C; — C, is
holomorphic, by Schwarz-Pick Lemma, we have that

H(z) — H(z)| B B R :gg—Re(z)
m —PC+(H( ), H(2)) §P<C+( , 20) 7+ 2 50+Re(z)’
Se
t g0 —Re(2)
g0+ Re(z)

Then, applying the triangular inequality in the latter inequality we obtain

H()| — |Hz)| < |H() ~ H(z0)| < ATIG) + Hzo)l < AHE)| + [H ).
This is,
HE) < T HG = 52

€0
H < —M.
< [H(z0)| < =

Finally, if 2 € C_,, we have that
H(z)| <M < 2M
£
and the claim follows.

We conclude showing (vi) implies (i). Let us assume that H is not bounded in C..
Then, given n € N, there exists z, € C. such that |H(z,)| > 2n. Now, by the choice of
zn, one of the following cases happens:

i) Re(H(z,)) > n,
ii) Re(H(z,)) <n and Im(H(z,)) > n, or

iii) Re(H(z,)) < n and Im(H (z,)) < —n.

To simplify, write 6 = 2¢/5. Since holomorphic functions are Lipschitz continuous in the
pseudo-hyperbolic metric, by Lemma 4.8, we have that

p(H(z,), Hw)) < p(zn,w) < }l’ for all w € D(z,,9).

Claim. Either one of the following statements holds

a) Re(H(w)) > n/3, for all w € D(z,,9),

b) Im(H (w)) > n/3, for all w € D(z,,d), or

¢) Im(H(w)) < —n/3, for all w € D(z,,0).
Let t, = inf{t : ®;(z,) € D(z,,9)}. Using the claim, we have that for each 0 < ¢ < ¢,
either Re(H (P¢(z,))) > n/3 for all t < t,, Im(H(P(z,))) > n/3, for all t < t,, or
—Im(H (P4(2,))) < —n/3, , for all t < t,. We begin by assuming that the first holds:

5 = |y (20) — 2a| > Re(®y, (20) — 21) = /0 " Re(H(®.(2,))) dr > %ntn.
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In the other two remaining cases the situation is similar. Hence, we can conclude that
6 = |Py, (2n) — 20| = 30ty

Therefore, for each natural number n, there is z, € C. and 0 < ¢, < 3d/n, such that
d = |4, (2n) — zn|. This implies that {®;} cannot tend uniformly to the identity in C. as
t goes to zero.
Proof of the Claim. We begin by assuming case i). By Lemma 4.7 a) with r = 1/4,

we have that

3 3
Re(H(w)) > gRe(H(zn)) > e
This gives a). Similarly, if we are under case ii) (the proof also holds for case iii)), using

Lemma 4.7 b) with r = 1/4, we find that

2rRe(H (z,)) 2r 8n

[ (H () — T(F (z,))] < 2o )] o 20, B0
Since Im(H(z,)) > n, we conclude that Im(H (w)) > 7n/15 and this gives b). Arguing in
a similar fashion for c) gives the desired conclusion and concludes the proof. O

There are many interesting continuous semigroups in the right half-plane satisfying
condition (ii) from Theorem 1.2. More specifically, as we will see in Section 5, there
are certain continuous semigroups in C,, intimately linked to the semigroups of bounded
composition operators on some Banach spaces of Dirichlet series, for which the statements
of Theorem 1.2 hold.

Example 4.9. There exist continuous semigroups in C, failing to converge uniformly
to the identity in the whole right half-plane C,. Fix a € [0,1). Consider the family of
holomorphic functions in C, given by

[0}

Ha<2’) ) Z€C+7

T 1-a
for defining 2® we take the principal logarithm. Clearly, H,(C,) C C,. Hence, H, is

the infinitesimal generator of a continuous semigroup {®,;} in C;. We can compute these
semigroups by solving the Initial Value Problem

: w?(t)

4. = -\

(4.9 i(p) = 0
where w(t) = ®4(2), for z € C; fixed. Therefore,

Dy(z) = (t+ 2" %),

We can also compute the Koenigs map h,, of the semigroups {®;} using that

hl.(2) = Hal(z) =z Y(1—-a), zeC;.

and w(0) =2z € Cy,
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Therefore, h,(2) = 217 and it is straightforward to check that
®i(2) = hy' (ha(2) +1)).
Eventually, ®;(z) — z as t goes to zero locally uniformly. However, the infinitesimal

generator H, is not bounded in any half-plane C.. Therefore, thanks to Theorem 1.2 the
semigroup {®,} fails to converge to the identity uniformly in C,, £ > 0.

5. CONTINUOUS SEMIGROUPS IN THE GORDON-HEDENMALM CLASS

For unexplained results and terminology of Dirichlet series, we refer the readers to the
monographs [13, 19]. As customary, we denote by D the space of Dirichlet series that
converges somewhere, namely the series

o) = 3 ™,
n=1

which are convergent in some half-plane Cy.

Gordon and Hedenmalm gave the characterisation of the boundedness of composition
operators in the context of the Hardy space of Dirichlet series 2, see [14]. To do so, they
introduced the nowadays known as Gordon-Hedenmalm class G.

Definition 5.1. Let & : C, — C, be an analytic function.

(1) We say that @ belongs to the class G if there exist cp € NU{0} and ¢ € D such
that

(5.1) O(2) = coz + p(2).
The value cg is known as the characteristic of the function ®.

(2) We say that ® belongs to the Gordon-Hedenmalm class G if & € G, and ®(C,) C
Cy/2 in case cgp = 0.

Gordon and Hedenmalm proved the following characterisation.

Theorem 5.2 (Gordon-Hedenmalm). An analytic function ® : Cij2 — Cy)o defines a
bounded composition operator Cy : H? — H? if and only if ® has a holomorphic extension
to C, that belongs to the class G.

It is worth recalling that in [11, Proposition 3.2|, it was shown that for any continuous
semigroup {®;} of analytic functions in the class G, ¢y, = 1 for all ¢ and that its
Denjoy-Wolff point is co. In [11, Theorem 1.2], it was characterized when a semigroup of
composition operators is strongly continuous in the Hilbert space H? as follows:

Theorem 5.3. Let {®;} be a semigroup of analytic functions, such that &, € G for every
t > 0 and denote by T; the composition operator Ti(f) = f o ®;. Then, the following
assertions are equivalent:

a) {T; }+>0 is a strongly continuous semigroup in H2.
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b) {P:}i>0 is a continuous semigroup.
c) Di(z) = z, as t goes to 0, uniformly in z € C., for every e > 0.

Bringing together the above Theorem 5.3 and Theorem 1.2 we achieve Corollary 1.3.
It is worth also recalling that the infinitesimal generator of a continuous semigroup in
G is a holomorphic function that sends the right half-plane into its closure. In fact, in
[11, Theorem 5.1], it is given the following description of infinitesimal generators of the
continuous semigroups in G.

Theorem 5.4. Let H : C, — C, be analytic. Then, the following statements are equiv-
alent:

a) H is the infinitesimal generator of a continuous semigroup of elements in the class G.
b) He DN H>(C,), for all e > 0.
c¢) HeD.

6. CONTINUOUS SEMIGROUPS IN THE UNIT DISC: PROOF OF THEOREM 1.1.

This section is mainly devoted to the proof of Theorem 1.1. We will need the following
auxiliary elementary lemma. The first statement is well-known and the reader may find
a proof of it in any Complex Analysis manual.

Lemma 6.1. Let p : D — C, be an analytic function, G(z) = (z — 1)?p(z), z € D, and

G1: Cp — C, given by Gi(w) = 2p((w — 1)/(w + 1)), w € C,. Then, there exists a
constant M > 0 such that the following statements hold:

a) For any z € D,

M
< .
o) <
b) Let A € (0,1) and consider z € Hy = D(A\,1 — X). Then
M
G < —.
G <
c) Ifw=ux+iy € Cy, then
1 2 2
G (w)] < M%.

Proof. Part a) is a well-known result which follows from Herglotz’s representation formula.
Regarding statement b), take z € D(A,1 — \). Then there is 5 > X such that |z — 3| =
1 — 3. Thatis, z = (1 — B)e? + 3 for some 6 € (0,27). A quick computation shows

[z—1]2 _ 1-8
1-|z]2 = B

. Therefore, by a),

M 1-8
G:) = 2 = 1PIp(E)| < |2 = 1Py = M= = < Mg < M

|
> =
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Claim c¢) also follows from a). Indeed,

w1 ety

|G1(w)] = 2[p((w = 1)/(w+ 1)) < ZM‘w TP —w—1p Az

O

Proof of the elliptic case in Theorem 1.1. Let {®,} be an elliptic continuous semigroup on
D. Since |®4(z) — z| < 2, it is enough to get the thesis if ¢ is close to zero. By a standard
argument, we may assume that its Denjoy-Wolff point is zero. By the Schwarz Lemma
and the algebraic structure of the semigroup, we have that for every ¢ > 0, |®.(2)| < |2|
and |®,(z)| increases to |z|, as t decreases to 0, for all z € D.

We shall denote by G the infinitesimal generator of the semigroup {®,}. It is known
that G(z) = —zp(z) (see Theorem 2.2), where p : D — C, is analytic and there exists
M > 0 such that

M
p(2)] < zeD.

— 1 _ |Z|’
Set Cy 1= SuP,ep(o,1/2) |G(u)]. Take 2o € D and define ¢; = inf{t > 0 : [®;(2)] < 1/2}.
Notice that ¢; is 0 if |29| < 1/2. Then, by the definition of ¢y,

1B, (20) — 20| = /OG(@(zO))dT

< / | G(®, (z0)|dr + / G (@, (20))|dr

t1
0

Therefore, we can suppose that |z9| > 1/2 and it suffices to bound the first term in the
latter inequality. ‘
From now on, fix 2y = re with r € (1/2,1) and 6, € [0,27]. Consider the set

1
A:{ZGD:5<|z|<1,—7?/2+90<arg(z)<7r/2—|—90}.

Notice that inf{|z — z| : |2| > 1/2,2 ¢ A} > V/2/2.

We claim that there exists C' = C(M) > 0 such that if ®,(z) € Afor all 0 < u < ¢
then |®;(z0) — 20| < OV1.

Let us see that this is enough to conclude the proof and then we will prove the claim.
Take to < t; such that ®,,(z) € 0A and ®,(z9) € A for all u < ty. If to = t; we
conclude the proof by using the claim. If 5 < ¢;, then |arg(®y,(20)) — 6| = /2 and
|®y,(20) — 20| > V/2/2. Moreover, |®,,(2) — 20| < Cv/T;. Thus, for t, < t < t; we have

|D,(20) — 20| < 2 < 2V2CV/1; < 2V2C VL.
And the proof would be finished with the constant 2v/2C.
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Thus, let us prove the claim. Let T'(z) = —log(z), where log denotes the branch in A
of the logarithm such that log(zy) = In|zg| + iy, and set wy = —log(2y). Notice that

R:=T(A) ={weCy:0<Re(w) <log2, —m/2—0y <Im(w) <7/2—0y}.

Define p; : C; — C, by p1(w) = p(e™). Hence, it is the infinitesimal generator of a
continuous semigroup in C, (see |2, Theorem 2.6]). Let us denote such a semigroup by
{W,;}. Furthermore, the generator p; satisfies the hypothesis of Theorem 4.4. Indeed, by
Lemma 6.1, there is M > 0 such that

M 2M
Ip1(w)| = |p(e™)] < <
1 — e~ Re(w) = Re(

w)’
whenever 0 < Rew < 1. Moreover, there exists 0 < gy < 1 such that |p(2)| < 2M/eq if
|z] < e”!. Hence if £ < g9 and w € C,, we have |p;(w)| < 2M /.
Consider the curve v : [0,¢) — R given by () = —log(®;(z0)). Then a simple
computation yields
G(Dy(~
(1) =~ D) _ (@ 20)) = plesp(—(1) = i (110)
D4 (20)
This means that W, (wg) = vy(t). Therefore, applying Theorem 4.4 and using the fact that
the function e~ is Lipschitz in C,, there is a constant A = A(M) and ¢, such that

AVE > [y (wo) — wol = log(Py(z0)) — log(z0)| > |®1(20) — 2o,
whenever t < tg, and the claim follows. O

Proof of the non-elliptic case in Theorem 1.1. Take a non-elliptic continuous semigroup
{®;}. We may assume that its Denjoy-Wolff point is 1 and again it is enough to get the
thesis when ¢ is close to zero. Let us call H the infinitesimal generator of the semigroup.
By the Berkson-Porta decomposition (see Theorem 2.2), there is p : D — C, holomorphic
such that H(z) = (z — 1)*p(z). Moreover, by Lemma 6.1, there is M > 0 such that, for
all0 <A <1

M
|H(2)| < 0 <€ DM\ 1= )).
Take A = v/t < 1/2 and z € D. We recall that, by Julia’s Lemma [7, Theorem 1.4.7],

Hy = D(\,1—)) is invariant by the elements of the semigroup. Write ty = t5(z) = inf{u :
(I)u(Z) € H,\} If ty < t, then

9.(2) = B2 < [ 1@ ()ldr < M2,

Thus, if we prove that there is C' such that |®,(z) — z| < Cy/u for all u < tg, then
t—to

Vit

|Py(2) — 2| < max {M,C}(Vto + ) < 2max {M,C}Vt
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and the proof would be concluded. This means that we may assume that ¢ < ¢y, that is,
we assume that the trajectory y(u) = ®,(z), 0 < u <t lies outside the horodisc H).

Let T : D — Cy, T(s) = 1%, s € D. We set A = T'(z) and B = T(®(z)). Notice
that T(H)) = C_»_. Moreover, since we took A < 1/2, we also have that Ca DGy,
Applying again Julia’s Lemma, the map u +— Re(®,(z)) is non-decreasing. We know
that Re(B) — Re(A) < 2X and call d = |[Im(A) — Im(B)|. We also may assume that
Im(A) <Im(®,(2)) <Im(A) +d =1Im(B), for all 0 <u < t.

Let Gi(w) = 2p(T~H(w)), w € Cy. Set v : [0,t) — C,, where y(u) = T(y(u)). G is
the infinitesimal generator of a semigroup in the right half-plane C, and

Y (u) = T'(y(u)y'(u) = 2p(y(u)) = G1(v(u)),

for all u. Thus, v is a trajectory of such infinitesimal generator. Notice that v* = ([0, t])
lies in the vertical strip €2y = {s € C4 : Re(s) < 2A}. Now, a simple computation shows
that
A — B
®y(z) — 2| =[T"(A) —T7(B)| = | .

Denote by p the constant provided by Corollary 3.2 and M the constant associated with
p given in Lemma 6.1. Take n > max{18,24/p,25M384/p}. If |®;(2) — 2| < /1, then we
are done. Assuming on the contrary that |®,(z) — z| > nv/t, we will get a contradiction.
Notice that in such a case

(6.1) |A — B| >%?7\/2_f|1+AH1+B\ 2\?77:)\77/2.
Then, recalling that n > 18 and Re(A4) — Re(B) < 2A,
d* > %2172 — (Re(A) — Re(B))? > %2772 —4X? = NP4 — 4) > 64N%
That is,
(6.2) d > 8\ > 4(Re(B) — Re(A)).

Once again, we argue as in the proof of Theorem 4.4. Consider the square
C={weC,:Re(A) <Re(w) <Re(A) +d, Im(A) < Im(w) < Im(A) + d}.

Let wy = A + (1 +i)d/2. Similarly, we define the curve o : [0,t] — C, given by
a(u) = f(u) +ig(u), where f(u) = Re(y(u)) and g(u) = min{Im(y(z)) : z > u}. We
shall also denote by v* the set v([0,t]) and by a* the set «([0,t]). The curve o* divides
the square C into two regions. Let {2 be the right hand-side region of the square.

Then, we introduce the sets
p|A— B

Ag={sea”:s&~"}, Alz{s€a*ﬂ7*:\G1(s)\§§ -

}
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and A= Ay U A;. For E C 090, w(F) = wq(wy, E). Arguing as in the proof of Theorem
4.4, we get that w(a*) > 1/4. We now estimate ¢(A) in order to apply Corollary 3.2:

t
((A) §/ Reo/(u)du+/ Im o/ (u)du
0 a~(A)

4 4
<o+84-B<(Z+2)ja-B<2(=+2)q
3 n 3 n 3

where we have used (6.1) and (6.2). Since n > 24/p, then ((A) < pd. Of course,
D(wg,d/4) C . By Corollary 3.2, we have that w(A) < 1/8. Since w(a*) > 1/4, we
conclude that

(6.3) w(a®\ A) > %

Using (6.3), both the definitions of the set A and of harmonic measure, and using that
Re(v/G1) is a positive harmonic function, we get

V]G (wo)] ZRe\/GI(wO):AQRe(\/Gl(s))dw(s)2/*\ARe( G (3))dw(s)
= [ A
e

IA—BI

w(a®\ A) >

\/_
That is,

p |A-B|
|2 384 t

Let us first assume that 1/2 < |1 + A||1 + B|™! < 2. Using both (6.4) and (6.1), we
have that

(6.4) |G (wo)

p
1+ A||[1+ B
Gr w)] > rgn—zl1 + A1+ B

We recall that wy = x + iy is the centre of the square C. Now, |1+ A||1l + B| > N/2,
where N = max(|1 + A% |1 + BJ|?). Then, since Im(A) < y < Im(B), we have N > y>.
The definition of x together with the fact that d > 8\ imply that

d 3 3 3
(6.5) v <2+ 5 < 2d < S max(|Im(A)], [Im(B)]) < ém
In particular, 1 + x < g\/N . Using these estimates on z and y, we find that 8N >
y* + (1 + x)2. Therefore,

p 1 p 1 y 24 (1+x)?
G > — 1 —_—nF——
(Grwo)l > 35735 f(y T+ 2)Y) 2 g,
where we have used 2v/t = 2\ < x. Finally, Lemma 6.1 ¢) gives
1
|G1(wo)| > sor 571G (wo)]
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Since n > 8M %, we obtain a contradiction and, consequently, it cannot occur that
1/2<|1+ A1+ B <2
Suppose now that |1 + B| > 2|1 + A|. The case 2|1 + B| < |1 + A| is proven in a same
fashion. Using Lemma 6.1 we have that
1+2)? +°
(6.6) Grlw) < P HT

Notice that, by our assumption,

A= B|>[1+B|—[1+A4| >

|1+ B
5

Therefore, we have x > d/2 > |1 + B|/8 and

ol < ]ImA];|ImB| - ]1+A|;|1+B\

Now, as |1+ B| > 2|1 + A|,

< |1+ B|.

3
d=|Im(A) —Im(B)| < [Im(A)| + |Im(B)| < |1+ A|+ |1+ B| < §|1 + B|.
Eventually, using again the fact that z < 2d (see (6.5)), we have z < 9|1 + B|/8. Using
these last three estimates in (6.6), we find that

(1+2)*+9°
2x

On the other hand, using again (6.4) and (6.1), we have that

p 1 1 P P
G > —_—pn—|1+All1l+B|> —nl1+A|ll1+B|> -*--nl1+ B
(Galun)| > g on 21+ AL+ BI 2 Gnf1 + AL+ Bl > Sl + B
where we have used that v/t < 1 /2. Since n > 25M %‘, we reach the desired contradiction.

0

To finish we provide an example of how the statement of Theorem 1.1 cannot be
strengthened in the sense that t'/? cannot be replaced by another function that goes
to zero faster than t'/2.

Example 6.2. Consider p : D — C,, p(z) = (1 +2)7', 2 € D and the infinitesimal
generator given by
H(z) = (1— 2)%p(z) = -2 . cp
B PE =1 '
Let {®;} be its continuous semigroup. Its Denjoy-Wolff point is 1 and since H(x) is real
whenever z € (—1,1), we have that ®,(z) € (—1,1) for all x € (—1,1).
Consider the vector field G(z) = 7, with z € (=1,0). For 2 € (—1,0) fixed, the
solution of the initial value problem

y'(t) =Gy(), y0)==
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is given by y,(t) = /2t + (1 +2)?2 — 1 for all £ > 0.

We claim that for every ¢ > 0 and x < 0 such that ®,(z) < 0, we necessarily have that
Oy (x) > y,(t). Fix t > 0 and o < 0 so that ®;(z) < 0. Then, we have that ®&4(z) < 0 for
all 0 < s <t. Define e(u) = y,(u) — P, (z). Observe that e(0) = 0 and

0

(6.7) () = o (elt) = ®(@) | = Glunlw) — H(®u(z).

Since H(z) > G(z) for all z € (—1,0), we have that ¢’(0) < 0. This, together with the
fact that e(0) = 0, imply that e(u) < 0 for w small enough. This is, ®,(x) > y,(u) for u
small enough.

Let us now suppose the existence of u < ¢ such that y,(u) > ®,(x). Define

t; = inf{u > 0: P,(x) <0, e(u) =0}.

The assumption on u and the fact that e(w) < 0 for w small enough imply that ¢; < ¢t.
Thus, for u < tq, e(u) < 0. Then, €'(¢;) > 0. But,

¢(t1) = G(yx(t1)) — H(Py, (x)) <0

since H(u) > G(u) for all u € (—1,0). A contradiction. Therefore, ®;(x) > y,(t) for all
z € (—1,0) and all ¢ such that ®;(x) < 0.
Notice that the curve t — ®;(—1/2) is contained in the interval (—1, 1) and lim;_,o, ®;(—1/2) =
1. Then, we can take ¢y such that &, (—1/2) = 0. Then ®,(z) < 0 for all z < —1/2 and
t < ty. Thus, for t < t,

sup [P(z) — z[ = sup [Py(z) —z| = sup (Pi(z)—x)

z€D r<—1/2 r<—1/2
> sup (y.(t) —xz)= sup (V204 (14+2)2—1—12x).
r<—1/2 z<—1/2

If < vt/2 — 1, then \/2t + (1 + )2 — 1 — x > v/t. Therefore,

sup |®,(2) — z| > Vt, for all t < t,
z€D

and the claim follows.
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