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Abstract

In many binary segmentation tasks, most CNNs-based methods use a U-shape encoder-decoder
network as their basic structure. They ignore two key problems when the encoder exchanges infor-
mation with the decoder: one is the lack of interference control mechanism between them, the
other is without considering the disparity of the contributions from different encoder levels. In
this work, we propose a simple yet general gated network (GateNet) to tackle them all at once.
With the help of multi-level gate units, the valuable context information from the encoder can be
selectively transmitted to the decoder. In addition, we design a gated dual branch structure to
build the cooperation among the features of different levels and improve the discrimination ability
of the network. Furthermore, we introduce a “Fold” operation to improve the atrous convolution
and form a novel folded atrous convolution, which can be flexibly embedded in ASPP or DenseA-
SPP to accurately localize foreground objects of various scales. GateNet can be easily generalized
to many binary segmentation tasks, including general and specific object segmentation and multi-
modal segmentation. Without bells and whistles, our network consistently performs favorably against
the state-of-the-art methods under 10 metrics on 33 datasets of 10 binary segmentation tasks.

Keywords: Binary Segmentation, Gated Network, Gated Dual Branch, Folded Atrous Convolution.

1 Introduction

Image segmentation is the process of dividing a
digital image into segments that simplify and/or
change the representation of the image to some-
thing more meaningful and easier to analyze.
From the perspective of pixel-level classification,
image segmentation can be specifically divided
into binary segmentation, semantic segmentation,

instance segmentation and panoramic segmenta-
tion. Compared with the others, segmentation
problems considered in binary segmentation are
more pure and focused, that is, accurately dis-
tinguishing the foreground and background. As
shown in Fig. 1, binary segmentation has a wide
range of applications in military, industrial, med-
ical, etc.

1

ar
X

iv
:2

30
3.

10
39

6v
2 

 [
cs

.C
V

] 
 3

 M
ay

 2
02

4



Springer Nature 2021 LATEX template

2 Article Title

Fig. 1 Some meaningful binary segmentation tasks.

Rich foreground definitions prompt binary seg-
mentation with numerous branches, such as salient
object detection, camouflaged object detection,
shadow detection and transparent object detec-
tion. In recent years, with the development of deep
learning, there are many effective methods pro-
posed and achieve good performance. Although
each branch of binary segmentation is thriving
and show a gratifying state, almost all methods
focus on researching single one branch and ignore
cross-branch comparison in experiments and tech-
niques. As we know, each branch belongs to the
binary segmentation trunk because they have a
same mathematical definition. They face many
same challenges in segmentation techniques. How-
ever, these task branches have become more and
more independent, which will impede the develop-
ment of the entire binary segmentation field. To
this end, it is urgent to provide a general method
for diverse binary segmentation branches.

There are three challenges in accurate binary
segmentation: Firstly, most methods [41, 60, 113,
136, 146, 192, 212, 239, 248, 271] tend to adopt U-
shape [110, 149] as the baseline and then combine
multi-level features in either the encoder [146, 192,
212, 239, 248] or the decoder [60, 113, 212, 254,
285] to gradually reconstruct the high-resolution
feature maps. In each convolutional block, they
separately formulate the relationships of internal
features during forward update. It is well known
that the high-quality segmentation predicted in

the decoder relies heavily on the effective fea-
tures provided by the encoder. Nevertheless, these
methods directly use an all-pass skip-layer struc-
ture to concatenate the features of the encoder
to the decoder in the isolated [41, 42, 116, 149,
239, 271] or nested [41, 136, 145, 259, 270, 285]
manner. The effectiveness of feature aggregation
at different levels is not quantified. This not only
introduces misleading context information into
the decoder but also causes that the typically
useful features can not be adequately utilized.
In cognitive science, Yang et al. [226] show that
inhibitory neurons play an important role in how
the human brain chooses to process the most
important information from all the information
presented to us. And inhibitory neurons ensure
that humans respond appropriately to external
stimuli by inhibiting other neurons and balanc-
ing excitatory neurons that stimulate neuronal
activity. Inspired by this work, we think that it
is necessary to set up an information screening
unit between each pair of encoder and decoder
blocks in binary prediction. It will help distinguish
the most task-aware features of foreground regions
and suppress background interference. Secondly,
due to the limited receptive field, a single-scale
convolutional kernel is difficult to capture context
information of size-varying objects. This moti-
vates many efforts [33, 44, 50, 75, 111, 115, 143,
237, 239] to investigate multi-scale feature extrac-
tion. These methods directly equip an atrous
spatial pyramid pooling module [13] (ASPP) or
DenseASPP [228] in their networks. However,
when using a convolution with a large dilation
rate, the information under the kernel seriously
lacks correlation due to inserting too many zeros.
This may be detrimental to the discrimination of
subtle image structures. Thirdly, both body and
boundary of the foreground need to accurately
segmented. Most existing models either use pro-
gressive decoder [42, 87, 129, 131, 225, 263, 264,
270] or parallel decoder [33, 53, 75, 163, 173, 174,
213, 262]. The progressive structure begins with
the top layer and gradually utilizes the output of
the higher layer as prior knowledge to fuse the
encoder features. This mechanism is not conducive
to the recovery of details because the high-level
features lack fine information. While the parallel
structure easily results in inaccurate localization
of objects since the low-level features without
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semantic information directly interfere with the
capture of global structure cues.

In this paper, we propose a simple yet general
gated network (GateNet) for binary segmenta-
tion. Firstly, based on the feature pyramid net-
work (FPN), we construct multi-level gate units
to combine the features from the decoder and
the encoder. We use convolution operation and
nonlinear functions to calculate the correlations
among features and assign gate values to different
blocks. In this process, a partnership is estab-
lished between different blocks by using weight
distribution and the decoder can obtain more effi-
cient information from the encoder and pay more
attention to the target-aware regions. Secondly, we
construct a folded atrous spatial pyramid pooling
(Fold-ASPP) module to gather multi-scale high-
level foreground cues. With the “Fold” operation,
the atrous convolution is implemented on a group
of local neighborhoods rather than a group of iso-
lated sampling points, which can help generate
more stable features and more adequately depict
finer structure. Thirdly, we design a mix feature
aggregation decoder that a parallel branch by con-
catenating the output of the progressive branch
and the features of the gated encoder, so that the
residual information complementary to the pro-
gressive branch is supplemented to generate the
final prediction.

Our main contributions can be summarized as
follows.

• We provide a unified perspective of binary seg-
mentation by comprehensively analyzing many
binary segmentation tasks.

• We propose a simple gated network to adap-
tively control the amount of information that
flows into the decoder from each encoder block.
With multi-level gate units, the network can
balance the contribution of each encoder block
to the the decoder block and suppress the
features of background regions.

• We design a novel folded atrous convolution
that can transfer existing multi-scale modules
into our Fold style and enjoy more effective
feature representation.

• We build a dual branch architecture. They form
a residual structure, complement each other
through the gated processing and generate bet-
ter results.

• We construct both single-stream and two-
stream gated networks to adapt the binary
segmentation required one or two input sources.

• Extensive comparisons with 42 state-of-the-art
methods on 33 challenging datasets of 10 binary
segmentation tasks, including RGB, RGB-D
and optical remote sensing image salient object
detection, camouflaged object detection, defo-
cus blur detection, shadow detection, transpar-
ent detection, glass detection, mirror detection
and polyp segmentation in medical images,
show that our method performs much better
than other competitors under 10 metrics and
possess strong generalization. Hence, it can be
seen a strong baseline for the binary segmenta-
tion field.

Compared with the ECCV version [269] (Oral)
of this work, the following extensions are made.
I) We conduct a survey on the field of binary
segmentation, covering 10 popular branches and
141 fully supervised methods, evaluation metrics
and datasets. II) Deeper theoretical explanations
of the proposed gate unit design are added and we
improve the previous gate unit into a stronger ver-
sion. III) Based on the overall structure of the
original single-source input GateNet, we expand a
two-stream version of GateNet suitable for two-
source input tasks. Meanwhile, our multi-level
gate units can further carry forward the spirit
of suppress and balance between different sources.
IV) We report much more extensive experimen-
tal results that demonstrate the superiority of both
single-stream and dual-stream GateNet in 10 pop-
ular binary segmentation tasks. V) We further
provide more implementation details and thorough
ablation studies at qualitative and quantitative
aspects. VI) We perform in-depth analyses and
discussion for our gate unit.

2 Retrospect

2.1 Diverse Binary Segmentation
Tasks (DBS)

As shown in Fig. 1, there are many kinds of
binary segmentation in real life. We select 10 cur-
rently well-developed and hot tasks that cover
the requirements of general and specific object
segmentation in natural images, remote sensing
images, and medical images. According to the
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rapid development of deep learning technology,
we only review the research progress in recent
five years in order to provide the latest and
comprehensive content.

2.1.1 General Object Segmentation

• RGB Salient Object Detection. Salient
object detection (SOD) aims to segment the
most salient (judged by different consciousnesses)
regions or objects in various scenes with or with-
out the engineered cues, such as visual cues,
geodesic cues, temporal cues, and human atten-
tion cues. Usually, it is adopted as a pre-
processing step in many computer vision appli-
cations, such as scene classification [148], person
re-identification [150] and image captioning [46].
• RGB-D Salient Object Detection.
Although RGB SOD methods can achieve sat-
isfactory performance in segmenting visually
salient objects, some complex scenarios are still
open to be resolved. For example, salient objects
share similar appearance to the background or
the other similar trivial objects. In recent years,
various depth-assisted salient object detection
(RGB-D SOD) methods [10, 143, 259] have been
proposed, in which absorbing geodesic cues from
the depth map is the hardcore.
• Remote Sensing Image Salient Object
Detection. Remote sensing images (RSIs) are
usually captured by sensors on anairplane as
an aerial view under various viewing angle
conditions. Although recent decades have wit-
nessed the remarkable success of SOD for natural
scene images, there is only a limited amount of
researches focusing on SOD for optical remote
sensing images (RSIs). Typically, optical RSIs
cover a wide scope with complicated background
and diverse noise interference.
• Camouflaged Object Detection. The study
of camouflage has a long history in biology, and
more details can be found in [162]. In the field of
computer vision, research on camouflaged object
detection (COD) is often associated with salient
object detection task. In general, saliency models
are designed for finding visually salient objects.
They are not suitable for finding hidden objects.
The local features of the camouflaged object are
usually slightly different from the surrounding
background. Recently, Fan et al. [41] make some
attempts towards this direction. They first build

the largest COD dataset, which contains 10, 000
images covering 78 camouflaged object categories.

2.1.2 Specific Object Segmentation

• Defocus Blur Detection. Defocus blur is a
blurring degradation caused by defocusing and
inappropriate depth of focus. Defocus blur is a
common phenomenon in real life when the scene
is beyond the focal distance of the camera. Defo-
cus blur detection can be potentially used to many
vision tasks (e.g., autofocus, depth estimation).
• Shadow Detection. Shadow is the light effect
caused by surface occlusion and are almost ubiq-
uitous in our daily lives. One one hand, shadow
can be used as auxiliary information due to
rich depth and geometry visual cues. On the
other hand, some important details of the object
may be hidden when overlapping with shadows.
Hence, shadow detection is important for shadow
removal [65], scene geometry [81] and camera
parameters [207].
• Glass and Transparent Detection. Trans-
parent objects are widely present in the real world,
such as glass, vitrines, and bottles. And most of
them appear in indoor scenes, especially glass-like
objects with brittle and smooth properties. Smart
robot operates tasks in living rooms or offices, it
needs to avoid fragile objects. Hence, it is essen-
tial for vision systems to be able to detect and
segment transparent objects from input images.
• Mirror Detection. As a very important object
in daily life, mirrors are ubiquitous. They can not
only reflect light, but also present a similar mir-
ror image of surrounding objects or scenes. As a
result, once the computer vision system or robot
encounters a scene with a mirror, the performance
will drop significantly. To avoid this problem, it
requires these systems to be able to detect and
segment mirrors.
• Polyp Detection. According to GLOBO-
CAN 2020 data, colorectal cancer is the third
most common cancer worldwide and the second
most common cause of death. It usually begins
as small, noncancerous (benign) clumps of cells
called polyps that form on the inside of the colon.
Over time some of these polyps can become colon
cancers. Therefore, the best way of preventing
colon cancer is to identify and remove polyps
before they turn into cancer.
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Table 1 Summary of essential characteristics for reviewed fully-supervised binary segmentation methods.
The superscript “∗” in the fifth column (code link) regards this repository does not provide pre-trained weights for
re-evaluating performance publicly and “N/A” represents that the code is not available. STL is single task learning and
MTL is multi-task learning.

No. Year Methods Publication
Code
Link

Backbone
Learning
Paradigm

Training Dataset #Training

RGB Salient Object Detection

1

2
0
1
8

R3Net[33] IJCAI Pytorch ResNeXt-101 [219] STL MSRA10K [23] 10,000
2 SFCN[247] IJCAI Caffe VGG-16 [158] STL MSRA10K [23] 10,000
3 BMPM[239] CVPR TensorFlow VGG-16 [158] STL DUTS [188] 10,553
4 PiCANet[114] CVPR Pytorch ResNet-50 [59]/VGG-16 [158] STL DUTS [188] 10,553
5 PAGRN[254] CVPR N/A VGG-19 [158] STL DUTS [188] 10,553
6 DGRL[192] CVPR Caffe ResNet-50 [59] STL DUTS [188] 10,553
7 RAS[17] ECCV Pytorch VGG-16 [158] STL MSRA-B [117] 2,500
8

2
0
1
9

DEF[293] AAAI N/A ResNet-101 [59]/DenseNet-161 [68]/VGG-16 [158] STL DUTS [188] 10,553
9 AFNet[49] CVPR Caffe VGG-16 [158] MTL DUTS [188] 10,553
10 BASNet[146] CVPR Pytorch ResNet-34 [59] STL DUTS [188] 10,553
11 CPD[212] CVPR Pytorch ResNet-50 [59]/VGG-16 [158] STL DUTS [188] 10,553
12 MLMSNet[208] CVPR Pytorch VGG-16 [158] MTL DUTS [188] 10,553
13 CapSal[240] CVPR TensorFlow ResNet-101 [59] MTL COCO-CapSal [240]/DUTS [188] 5,265/10,553
14 PoolNet[111] CVPR Pytorch ResNet-50 [59]/VGG-16 [158] MTL/STL BSDS500 [4]+PASCAL VOC [37]+DUTS [188]/DUTS [188] 20,956/10,553
15 PS[193] CVPR N/A ResNet-50 [59]/VGG-16 [158] STL MSRA10K [23] 10,000
16 PFA[262] CVPR TensorFlow∗ VGG-16 [158] STL DUTS [188] 10,553
17 SCRN[213] ICCV Pytorch ResNet-50 [59] MTL DUTS [188] 10,553
18 BANet[163] ICCV Caffe ResNet-50 [59]/VGG-16 [158] MTL DUTS [188] 10,553
19 HRSOD[232] ICCV Caffe VGG-16 [158] STL HRSOD [232]+DUTS [188]/DUTS [188] 12,163/10,553
20 EGNet[260] ICCV Pytorch ResNet-50 [59]/VGG-16 [158] MTL DUTS [188] 10,553
21 DUCRF[221] ICCV Caffe VGG-16 [158] STL MSRA-B [117] 2,500
22 TSPOANet[119] ICCV N/A VGG-16 [158] STL DUTS [188] 10,553
23

20
20

PFPN[183] AAAI Pytorch ResNet-101 [59]/VGG-16 [158] STL DUTS [188] 10,553
24 GCPANet[19] AAAI Pytorch ResNet-50 [59] STL DUTS [188] 10,553
25 F3Net[202] AAAI Pytorch ResNet-50 [59] STL DUTS [188] 10,553
26 MSANet[284] AAAI N/A VGG-16 [158] STL DUTS [188] 10,553
27 MINet[136] CVPR Pytorch ResNet-50 [59]/VGG-16 [158] STL DUTS [188] 10,553
28 ITSD[278] CVPR Pytorch ResNet-50 [59]/VGG-16 [158] MTL DUTS [188] 10,553
29 LDF[203] CVPR Pytorch ResNet-50 [59] MTL DUTS [188] 10,553
30 CSNet[53] ECCV Pytorch Res2Net-50 [52]/ResNet-50 [59]/CSNet [53] STL DUTS [188] 10,553
31 GateNet[269] ECCV Pytorch ResNeXt [219]/ResNet-101/ResNet-50 [59]/VGG-16 [158] STL DUTS [188] 10,553
32

20
21

PFS[126] AAAI N/A ResNet-50 [59] STL DUTS [188] 10,553
33 KRN[220] AAAI Pytorch ResNet-50 [59] MTL DUTS [188] 10,553
34 JSODCOD[91] CVPR Pytorch∗ ResNet-50 [59] MTL COD10K [41]+CAMO [88]+DUTS [188] 14,593
35 Auto-MSFNet[242] ACM MM Pytorch ResNet-50 [59]/VGG-16 [158] MTL DUTS [188] 10,553
36 CTDNet[273] ACM MM Pytorch ResNet-50/ResNet-18 [59] MTL DUTS [188] 10,553
37 VST[116] ICCV Pytorch T2T [231] MTL DUTS [188] 10,553
38 HRRN[175] ICCV Pytorch ResNet-50 [59]/VGG-16 [158] MTL HRSOD [232]+DUTS [188]/DUTS [188] 12,163/10,553
39 iNAS[54] ICCV Pytorch NAS STL DUTS [188] 10,553
40 SCA[159] ICCV Pytorch ResNet-101 [59] STL SCAS [159] 5,534
41

20
22

-2
02

3

PoolNet+[112] T-PAMI N/A ResNet-50 [59]/VGG-16 [158]/MobileNet-V2 [152] STL DUTS [188] 10,553
42 CSNet[22] T-PAMI Pytorch ResNet-50 [59]/Res2Net-50 [52] STL DUTS [188] 10,553
43 EDN[211] TIP Pytorch ResNet-50 [59]/VGG-16 [158]/MobileNet-V2 [152] STL DUTS [188] 10,553
44 RCSBNet[83] WACV Pytorch ResNet-50 [59] MTL DUTS [188] 10,553
45 SHNet[253] ECCV N/A ResNet-50 [59]/VGG-16 [158] STL DUTS [188] 10,553
46 PGNet[215] CVPR Pytorch ResNet-18 [59] + Swin-B [120] MTL DUTS [188] 10,553
47 BBRF[127] TIP Pytorch∗ Swin-T/B [120] STL DUTS [188] 10,553
48 RMFormer[32] ACM MM Pytorch Swin-B [120] STL DUTS [188] 10,553
49 MENet[198] CVPR Pytorch ResNet-50 [59] MTL DUTS [188] 10,553

RGB-D Salient Object Detection

50

20
18

–2
01

9

PDNet[286] ICME TensorFlow VGG-16 [158] STL MSRA10K [23]+DUTS [188]+NJUD [80]+NLPR [141] 22,553
51 PCA[10] CVPR N/A VGG-16 [158] STL NJUD [80]+NLPR [141] 2,050
52 AF[190] Access TensorFlow VGG-16 [158] STL NJUD [80]+NLPR [141] 2,050
53 cmSalGAN[77] TMM Pytorch VGG-16 [158] MTL NJUD [80]+NLPR [141] 2,050
54 MMCI[12] PR N/A VGG-16 [158] STL NJUD [80]+NLPR [141] 2,050
55 TANet[11] TIP N/A VGG-16 [158] STL NJUD [80]+NLPR [141] 2,050
56 CPFP[259] CVPR Caffe VGG-16 [158] STL NJUD [80]+NLPR [141] 2,050
57 DMRA[143] ICCV Pytorch VGG-19 [158] STL NJUD [80]+NLPR [141]+DUTLF-D [143] 2,985
58

20
20

D3Net[43] TNNLS Pytorch VGG-16 [158] STL NJUD [80]+NLPR [141] 2,185
59 ICNet[97] TIP Caffe VGG-16 [158] STL NJUD [80]+NLPR [141] 2,050
60 DisenFuse[9] TIP N/A VGG-16 [158] STL NJUD [80]+NLPR [141] 2,050
61 TDESDF[7] TIP N/A VGG-16 [158] STL NJUD [80]+NLPR [141] 2,050
62 DPANet[18] TIP Pytorch ResNet-50 [59] MTL NJUD [80]+NLPR [141] 2,050
63 JL-DCF[51] CVPR Caffe/Pytorch ResNet-101 [59]/VGG-16 [158] STL NJUD [80]+NLPR [141] 2,200
64 UCNet[237] CVPR Pytorch VGG-16 [158] STL NJUD [80]+NLPR [141] 2,200
65 A2dele[144] CVPR Pytorch VGG-16 [158] STL NJUD [80]+NLPR [141]+DUTLF-D [143] 2,985
66 SSF[243] CVPR Pytorch VGG-16 [158] MTL NJUD [80]+NLPR [141]+DUTLF-D [143] 2,985
67 S2MA[115] CVPR Pytorch VGG-16 [158] STL NJUD [80]+NLPR [141]/NJUD [80]+NLPR [141]+DUTLF-D [143] 2,050/2,850
68 CoNet[75] ECCV Pytorch ResNet-101 [59] MTL NJUD [80]+NLPR [141]+DUTLF-D [143] 2,985
69 CMWNet[98] ECCV Caffe VGG-16 [158] STL NJUD [80]+NLPR [141] 2,050
70 BBSNet[98] ECCV Pytorch ResNet-50 [59]/VGG-19/VGG-16 [158] STL NJUD [80]+NLPR [141] 2,050
71 HDFNet[134] ECCV Pytorch ResNet-50 [59]/VGG-19/VGG-16 [158] STL NJUD [80]+NLPR [141]/DUTLF-D [143] 2,185/800
72 DANet[271] ECCV Pytorch VGG-19/VGG-16 [158] STL NJUD [80]+NLPR [141]/DUTLF-D [143] 2,050/800
73 PGAR[16] ECCV Pytorch VGG-16 [158] STL NJUD [80]+NLPR [141]/NJUD [80]+NLPR [141]+DUTLF-D [143] 2,185/2,985
74 CMMS[94] ECCV TensorFlow VGG-16 [158] MTL NJUD [80]+NLPR [141]+DUTLF-D [143] 2,985
75 CAS-GNN[124] ECCV N/A VGG-16 [158] STL NJUD [80]+NLPR [141] 2,050
76 ATSA[241] ECCV Pytorch VGG-19 [158] STL NJUD [80]+NLPR [141]+DUTLF-D [143] 2,985
77 DASNet[261] ACM MM Pytorch∗ ResNet-50 [59] STL NJUD [80]+NLPR [141] 2,200
78 FRDT[246] ACM MM Pytorch VGG-19 [158] STL NJUD [80]+NLPR [141]+DUTLF-D [143] 2,985
79 MMNet[106] ACM MM Pytorch Res2Net-50 [52] STL NJUD [80]+NLPR [141]+DUTLF-D [143] 2,985
80

20
21

HAINet[95] TIP Pytorch VGG-16 [158] STL NJUD [80]+NLPR [141]/NJUD [80]+NLPR [141]+DUTLF-D [143] 2,050/2,850
81 CDNet[79] TIP Pytorch VGG-16 [158] MTL NJUD [80]+NLPR [141]/NJUD [80]+NLPR [141]+DUTLF-D [143] 2,050/2,850
82 UTA[272] TIP Pytorch ResNet-50 [59] STL NJUD [80]+NLPR [141] 2,200
83 DSNet[204] TIP Pytorch ResNet-50 [59] MTL NJUD [80]+NLPR [141] 2,185
84 RD3D[15] AAAI Pytorch ResNet-50 [59] STL NJUD [80]+NLPR [141]/NJUD [80]+NLPR [141]+DUTLF-D [143] 2,185/2,985
85 DSA2F[165] CVPR Pytorch∗ VGG-19 [158] STL NJUD [80]+NLPR [141]+DUTLF-D [143] 2,985
86 DCF[74] CVPR Pytorch ResNet-50 [59] STL NJUD [80]+NLPR [141]+DUTLF-D [143] 2,985
87 CMINet[238] ICCV Pytorch ResNet-50 [59] STL NJUD [80]+NLPR [141]/NJUD [80]+NLPR [141]+DUTLF-D [143] 2,185/2,985
88 SPNet[280] ICCV Pytorch Res2Net-50 [52] STL NJUD [80]+NLPR [141] 2,185
89 DFM-Net[252] ACM MM Pytorch ResNet-34 [59]/MobileNet-v2 [152] STL NJUD [80]+NLPR [141] 2,200
90 TriTransNet[121] ACM MM Pytorch ResNet-50 [59] STL NJUD [80]+NLPR [141]/NJUD [80]+NLPR [141]+DUTLF-D [143] 2,185/2,985
91 CDINet[235] ACM MM Pytorch VGG-16 [158] STL NJUD [80]+NLPR [141]+DUTLF-D [143] 2,985
92

20
22

DCMF[184] TIP N/A VGG-16 [158] STL NJUD [80]+NLPR [141]/DUTLF-D [143] 2,185/800
93 MAD[161] TIP Pytorch ResNet-50 [59] STL NJUD [80]+NLPR [141] 2,185
94 CIR-Net[27] TIP Pytorch ResNet-50 [59]/VGG-16 [158] STL NJUD [80]+NLPR [141]+DUTLF-D [143] 2,985
95 DIGR-Net[24] TMM Pytorch ResNet-50 [59]/VGG-16 [158] MTL NJUD [80]+NLPR [141]+DUTLF-D [143] 2,985
96 C2DFNet[245] TMM Pytorch ResNet-50 [59] STL NJUD [80]+NLPR [141]+DUTLF-D [143] 2,985
97 MobileSal[210] T-PAMI Pytorch MobileNet-v2 [152] STL NJUD [80]+NLPR [141]/DUTLF-D [143] 2,185/800
98 DCBF[101] IJCV Pytorch ResNet-50 [59] MTL NJUD [80]+NLPR [141]/NJUD [80]+NLPR [141]+DUTLF-D [143] 2,185/2,985
99 MVSalNet[279] ECCV Pytorch ResNet-50 [59] STL NJUD [80]+NLPR [141]/NJUD [80]+NLPR [141]+DUTLF-D [143] 2,185/2,985
100 SPSN[90] ECCV Pytorch VGG-16 [158] STL NJUD [80]+NLPR [141]/NJUD [80]+NLPR [141]+DUTLF-D [143] 2,185/2,985
101

20
23

HRTransNet[170] TCSVT Pytorch ResNet-18 [59] STL NJUD [80]+NLPR [141] + DUTLF-D [143] 2,985
102 CAVER[137] TIP Pytorch ResNet-50/101 [59] STL NJUD [80]+NLPR [141] + DUTLF-D [143] 2,985
103 PopNet[214] ICCV Pytorch ResNet-18 [59] MTL NJUD [80]+NLPR [141] + DUTLF-D [143] 2,985
104 CATNet[164] TMM Pytorch Swin-B [120] MTL NJUD [80]+NLPR [141] + DUTLF-D [143] 2,985

https://github.com/zijundeng/R3Net
https://github.com/Pchank/caffe-sal/blob/master/IIAU2018.md
https://github.com/zhangludl/A-bi-directional-message-passing-model-for-salient-object-detection
https://github.com/Ugness/PiCANet-Implementation
https://github.com/TiantianWang/CVPR18_detect_globally_refine_locally
https://github.com/ShuhanChen/RAS-pytorch
https://github.com/ArcherFMY/AFNet
https://github.com/xuebinqin/BASNet
https://github.com/wuzhe71/CPD
https://github.com/JosephineRabbit/MLMSNet
https://github.com/zhangludl/code-and-dataset-for-CapSal
https://github.com/backseason/PoolNet
https://github.com/CaitinZhao/cvpr2019_Pyramid-Feature-Attention-Network-for-Saliency-detection
https://github.com/wuzhe71/SCRN
http://cvteam.net/projects/ICCV19-SOD/BANet.html
https://github.com/yi94code/HRSOD
https://github.com/JXingZhao/EGNet
https://github.com/xuyingyue/DeepUnifiedCRF_iccv19
https://github.com/chenquan-cq/PFPN
https://github.com/JosephChenHub/GCPANet
https://github.com/weijun88/F3Net
https://github.com/lartpang/MINet
https://github.com/moothes/ITSD-pytorch
https://github.com/weijun88/LDF
https://github.com/ShangHua-Gao/SOD100K
https://github.com/Xiaoqi-Zhao-DLUT/GateNet-RGB-Saliency
https://github.com/bradleybin/Locate-Globally-Segment-locally-A-Progressive-Architecture-With-Knowledge-Review-Network-for-SOD
https://github.com/JingZhang617/Joint_COD_SOD
https://github.com/LiuTingWed/Auto-MSFNet
https://github.com/zhaozhirui/CTDNet
https://github.com/nnizhang/VST/tree/main/RGB_VST
https://github.com/luckybird1994/HQSOD
https://github.com/guyuchao/iNAS
https://github.com/SirisAvishek/Scene_Context_Aware_Saliency
https://github.com/ShangHua-Gao/SOD100K
https://github.com/yuhuan-wu/EDN
https://github.com/BarCodeReader/RCSB-PyTorch
https://github.com/iCVTEAM/PGNet
https://github.com/iCVTEAM/BBRF-TIP
https://github.com/DrowsyMon/RMFormer
https://github.com/yiwangtz/MENet
https://github.com/cai199626/PDNet
https://github.com/Lucia-Ningning/Adaptive_Fusion_RGBD_Saliency_Detection
https://github.com/wangxiao5791509/cmSalGAN_PyTorch
https://github.com/JXingZhao/ContrastPrior
https://github.com/jiwei0921/DMRA
https://github.com/DengPingFan/D3NetBenchmark
https://github.com/MathLee/ICNet-for-RGBD-SOD
https://github.com/JosephChenHub/DPANet
https://github.com/kerenfu/JLDCF
https://github.com/JingZhang617/UCNet
https://github.com/OIPLab-DUT/CVPR2020-A2dele
https://github.com/OIPLab-DUT/CVPR_SSF-RGBD
https://github.com/nnizhang/S2MA
https://github.com/jiwei0921/CoNet
https://github.com/MathLee/CMWNet
https://github.com/zyjwuyan/BBS-Net
https://github.com/lartpang/HDFNet
https://github.com/Xiaoqi-Zhao-DLUT/DANet-RGBD-Saliency
https://github.com/ShuhanChen/PGAR_ECCV20
https://github.com/Li-Chongyi/cmMS-ECCV20
https://github.com/sxfduter/ATSA
https://github.com/iCVTEAM/DASNet
https://github.com/jack-admiral/ACM-MM-FRDT
https://github.com/gbliao/MMNet
https://github.com/MathLee/HAINet
https://github.com/blanclist/CDNet
https://github.com/iCVTEAM/UTA
https://github.com/Brook-Wen/DSNet
https://github.com/PPOLYpubki/RD3D/tree/master/model
https://github.com/sunpeng1996/DSA2F
https://github.com/jiwei0921/DCF/tree/main/DCF_code
https://github.com/JingZhang617/cascaded_rgbd_sod
https://github.com/taozh2017/SPNet
https://github.com/zwbx/DFM-Net
https://github.com/liuzywen/TriTransNet
https://github.com/1437539743/CDINet-ACM-MM21
https://github.com/MengkeSong/MaD
https://github.com/rmcong/CIRNet_TIP2022
https://github.com/ssecv/DIGR-Net
https://github.com/DUT-IIAU-OIP-Lab/C2DFNet
https://github.com/yuhuan-wu/MobileSal
https://github.com/jiwei0921/HiBo-UA
https://github.com/Heart-eartH/MVSalNet
https://github.com/Hydragon516/SPSN
https://github.com/liuzywen/HRTransNet
https://github.com/lartpang/CAVER
https://github.com/Zongwei97/PopNet
https://github.com/ROC-Star/CATNet/
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No. Year Methods Publication
Code
Link Backbone

Learning
Paradigm Training Dataset #Training

Salient Object Detection in Optical Remote Sensing Images

105

20
1
9–

2
02

3

LV-Net[93] TGRS N/A N/A STL ORSSD [93] 600
106 DAFNet[249] TIP Pytorch∗ VGG-16 [158] MTL ORSSD [93]/EORSSD [249] 600/1,400
107 PDF-Net[92] NC N/A VGG-16 [158] STL ORSSD [93] 600
108 MFI-Net[283] TGRS N/A ResNet-34 [59]/VGG-16 [158] MTL ORSSD [93]/EORSSD [249] 600/1,400
109 RRNet[29] TGRS Pytorch Res2Net-50 [52] STL ORSSD [93]/EORSSD [249] 600/1,400
110 GGRNet[118] PRCV N/A ResNet-50 [59] STL ORSSD [93]/EORSSD [249] 600/1,400
111 MJRBM[178] TGRS Pytorch ResNet-50 [59]/VGG-16 [158] STL ORSSD [93]/EORSSD [249]/ORSI-4199 [178] 600/1,400/2,000
112 CorrNet[99] TGRS Pytorch VGG-16 [158] STL ORSSD [93]/EORSSD [249] 600/1,400
113 MCCNet[96] TGRS Pytorch VGG-16 [158] STL ORSSD [93]/EORSSD [249] 600/1,400
114 HFANet[191] TGRS N/A ResNet-50 [59]/VGG-16 [158] MTL ORSSD [93]/EORSSD [249]/ORSI-4199 [178] 600/1,400/2,000
115 CIFNet[274] GRSL Pytorch Res2Net-50 [52] STL ORSSD [93]/EORSSD [249] 600/1,400
116 BAFS-Net[55] TGRS Pytorch ResNet-50 [59] STL ORSSD [93]/EORSSD [249] 600/1,400

Camouflaged Object Detection

117

20
2
0–

2
02

1

SINet[41] CVPR Pytorch ResNet-50 [59] STL COD10K [41]+CAMO [88] 4,040
118 PFNet[130] CVPR Pytorch ResNet-50 [59] STL COD10K [41]+CAMO [88] 4,040
119 Rank-Net[125] CVPR Pytorch ResNet-50 [59] STL COD10K [41]+CAMO [88] 4,040
120 MGL[233] CVPR Pytorch ResNet-50 [59] MTL COD10K [41]+CAMO [88] 4,040
121 JSODCOD[220] CVPR Pytorch ResNet-50 [59] MTL COD10K [41]+CAMO [88]+DUTS [188] 14,593
122 UGTR[225] ICCV Pytorch ResNet-50 [59] STL COD10K [41]+CAMO [88] 4,040
123 MirrorNet[222] Access N/A ResNet-50 [59] STL COD10K [41]+CAMO [88] 4,040
124 TANet[147] TCSVT N/A ResNet-50 [59] STL COD10K [41]+CAMO [88] 4,040
125 ERRNet[73] PR N/A ResNet-50 [59] STL COD10K [41]+CAMO [88] 4,040
126

20
2
2

PreyNet[244] ACM MM Pytorch ResNet-50 [59] MTL COD10K [41]+CAMO [88] 4,040
127 BGNet[166] IJCAI Pytorch Res2Net-50 [52] MTL COD10K [41]+CAMO [88] 4,040
128 SegMaR[76] CVPR Pytorch ResNet-50 [59] MTL COD10K [41]+CAMO [88] 4,040
129 FM[277] CVPR N/A Res2Net-50 [52]/ResNet-50 [59] MTL COD10K [41]+CAMO [88] 4,040
130 ZoomNet[135] CVPR Pytorch ResNet-50 [59] STL COD10K [41]+CAMO [88] 4,040
131 SINet-v2[40] T-PAMI Pytorch ResNet-50 [59] STL COD10K [41]+CAMO [88] 4,040
132 FAPNet[281] TIP Pytorch Res2Net-50 [52] MTL COD10K [41]+CAMO [88] 4,040
133 FindNet[104] TIP N/A ResNet-50 [59] STL COD10K [41]+CAMO [88] 4,040
134 R-MGL-V2[234] TIP Pytorch ResNet-50 [59] MTL COD10K [41]+CAMO [88] 4,040
135

20
23

FPNet[28] ACM MM N/A PVT [195] STL COD10K [41]+CAMO [88] 4,040
136 FSPNet[69] CVPR Pytorch ViT-B [35] STL COD10K [41]+CAMO [88] 4,040
137 FEDER[57] CVPR Pytorch Res2Net-50 [52]/ResNet-50 [59] MTL COD10K [41]+CAMO [88] 4,040
138 HitNet[63] AAAI N/A PVT [195] STL COD10K [41]+CAMO [88] 4,040

Defocus Blur Detection

139

20
18

–2
02

3

BTBNet[267] CVPR N/A VGG-16 [158] STL CUHK [66]+DUT [267] 1,204
140 DeFusionNet[174] CVPR N/A VGG-16 [158] STL CUHK [66]+DUT [267] 1,204
141 CENet[268] CVPR Caffe VGG-16 [158] STL CUHK [66]+DUT [267] 1,204
142 R2MRF[173] AAAI N/A DenseNet-161 [68]/VGG-16 [158] STL CUHK [66]+DUT [267] 1,204
143 BR2Net[171] TMM N/A ResNeXt [219]/VGG-16 [158] STL CUHK [66]+DUT [267] 1,204
144 Depth-Distill[31] ECCV Pytorch ResNeXt-101 [219]/VGG-19 [158] MTL CUHK [66]+DUT [267] 1,204
145 IS2CNet[256] TCSVT Caffe VGG-16 [158] STL CUHK [66]+DUT [267] 1,204
146 SG[264] CVPR Pytorch VGG-16 [158] STL CUHK [66]+DUT [267] 1,204
147 DENets[263] TIP Pytorch VGG-16 [158] STL CUHK [66]+DUT [267] 1,204
148 APL[265] ECCV Pytorch VGG-16 [158] STL CUHK [66]+DUT [267] 1,204
149 MA-GANet[78] TIP N/A VGG-16 [158] STL CTCUG [172]+DUT [267] 1,204
150 M2CS[102] TIP Pytorch VGG-16 [158] STL CUHK [66]/DUT [267] 704/60
151 MLDBD[266] TMM Pytorch VGG-16 [158] STL CUHK [66]+DUT [267] 1,204

Shadow Detection

152

20
18

–2
02

3

ST-CGAN [185] CVPR N/A ResNeXt-101 [219] MTL ISTD [185]/SBU [182] 1,330/4,089
153 DSC [67] CVPR Caffe VGG-16 [158] STL SBU [182] 4,089
154 ADNet [87] ECCV Pytorch N/A STL SBU [182] 4,089
155 BDRAR [289] ECCV Pytorch ResNeXt-101 [219] STL SBU [182] 4,089
156 ARGAN [34] ICCV N/A VGG-16 [158] STL ISTD [185]/SBU [182] 1,330/4,089
157 DSDNet [275] CVPR Pytorch ResNeXt-101 [219] STL ISTD [185]/SBU [182] 1,330/4,089
158 AFFPN[84] SPL Pytorch ResNeXt-101 [219] STL ISTD [185]/SBU [182] 1,330/4,089
159 RCMPNet[107] ACM MM N/A ResNet [59] STL SBU [182] 4,089
160 MIB[290] ICCV N/A EfficientNet-B3 [169]/ResNeXt-101 [219] STL ISTD [185]/SBU [182] 1,330/4,089
161 FSDNet[66] TIP Pytorch MobileNet-V2 [152] STL CUHK-Shadow [66] 7,350
162 ECA[47] ACM MM N/A ResNet-101 [59] STL ISTD [185]/SBU [182]/CUHK-Shadow [66] 1,330/4,089/7,350
163 SILT[227] ICCV Pytorch PVT-v2-B5 [196] STL ISTD [185]/SBU [182]/CUHK-Shadow [66] 1,330/4,089/7,350

Transparent Object Detection

164

2
0
1
8
–
2
0
2
3 TOM-Net [8] CVPR Torch VGG-16 [158] MTL TOM-Net [8] 178,000

165 TransLab [217] ECCV Pytorch ResNet-50 [59] MTL Trans10K [217] 5,000
166 Trans2Seg [218] IJCAI Pytorch ResNet-50 [59] STL Trans10K-v2 [218] 5,000
167 Transfusion [291] ICCV N/A ResNet-50 [59] MTL Trans10K [217] 5,000

Glass Object Detection

168

2
0
2
0
–
2
0
2
3

GDNet [131] CVPR Pytorch ResNeXt-101 [219] STL GDD [131] 2,980
169 RCARP [108] CVPR N/A ResNeXt-101 [219] STL GSD [108] 3,202
170 EBLNet [58] ICCV Pytorch ResNeXt-101 [219] MTL GDD [131] 2,980
171 PGSNet[230] TIP N/A ResNeXt-101 [219] STL GDD [131]/HSO [? ] 2,980/3,070
172 RFENet[45] IJCAI Pytorch ResNeXt-101 [219] MTL GDD [131] 2,980

Mirror Object Detection

173

2
0
1
9
–
2
0
2
3 MirrorNet [229] ICCV Pytorch ResNeXt-101 [219] STL MSD [229] 3,063

174 PMD [109] CVPR Pytorch∗ ResNeXt-101 [219] MTL MSD [229]/PMD [109] 3,063/5,095
175 PDNet [129] CVPR Pytorch ResNet-50 [59] STL RGBD-Mirror [129] 2,000
176 LSA[56] CVPR Pytorch ResNeXt-101 [219] STL MSD [229]/PMD [109] 3,063/5,095

Polyp Segmentation (Medical Image)

177

20
2
0–

20
23

ACSNet[251] MICCAI Pytorch∗ ResNet-34 [59] STL Kvasir-SEG [72]/EndoScene [180] 600/547
178 PraNet[42] MICCAI Pytorch Res2Net-50 [52] STL Kvasir [72]+CVC-ClinicDB [5] 1,450
179 ResUNet++[71] JBHI TensorFlow∗ ResNet [59] STL Kvasir [72]+CVC-ClinicDB [5] 1,450
180 TransFuse[255] MICCAI N/A ViT [35]/DeiT [176]/Res2Net [52]/ResNet [59] STL Kvasir [72]+CVC-ClinicDB [5] 1,450
181 MSNet[270] MICCAI Pytorch Res2Net-50 [52] STL Kvasir [72]+CVC-ClinicDB [5] 1,450
182 EMS-Net[189] EMBC N/A Res2Net-50 [52] STL Kvasir [72]+CVC-ClinicDB [5] 1,450
183 APRNet[154] EMBC N/A ResNet-34 [59] STL Kvasir-SEG [72]/EndoScene [180] 600/547
184 UACANet[85] ACM MM Pytorch Res2Net-50 [52] STL Kvasir [72]+CVC-ClinicDB [5] 1,450
185 SANet[201] MICCAI Pytorch Res2Net-50 [52] STL Kvasir [72]+CVC-ClinicDB [5] 1,450
186 LOD-Net[21] MICCAI Pytorch∗ ResNet-101 [59] STL Kvasir [72]+CVC-ClinicDB [5] 1,450
187 CCBANet[132] MICCAI Pytorch∗ ResNet-34 [59] STL Kvasir [72]+CVC-ClinicDB [5] 1,450
188 HRENet[153] MICCAI N/A ResNet-34 [59] MTL Kvasir-SEG [72]/Kvasir [72]+CVC-ClinicDB [5] 600/1,450
189 SCR-Net[206] AAAI N/A N/A STL Kvasir-SEG [72] 700
190 TRFR-Net[155] MICCAI N/A ResNet-34 [59] STL Kvasir-SEG [72]/ETIS-Larib [157]/CVC-ClinicDB [5] 700/137/210
191 LDNet[250] MICCAI Pytorch∗ Res2Net-50 [52] STL Kvasir [72]+CVC-ClinicDB [5] 1,450
192 BoxPolyp[200] MICCAI N/A Res2Net-50 [52] + PVT [195] STL Kvasir [72]+CVC-ClinicDB [5] 1,450
193 PPFormer[6] MICCAI N/A VGG-16 [158] + CVT [205] STL Kvasir [72]+CVC-ClinicDB [5] 1,450
194 CFANet[282] PR Pytorch Res2Net-50 [52] MTL Kvasir [72]+CVC-ClinicDB [5] 1,450
195 EMS-Net[189] JBHI N/A Res2Net-50 [52] MTL Kvasir [72]+CVC-ClinicDB [5] 1,450

https://github.com/rmcong/DAFNet_TIP20
https://github.com/rmcong/RRNet_TGRS2021
https://github.com/wchao1213/ORSI-SOD
https://github.com/MathLee/CorrNet
https://github.com/MathLee/MCCNet
https://github.com/ZhengJianwei2/BAFS-Net
https://github.com/ZhengJianwei2/BAFS-Net
https://github.com/DengPingFan/SINet
https://mhaiyang.github.io/CVPR2021_PFNet/index.html
https://github.com/JingZhang617/COD-Rank-Localize-and-Segment
https://github.com/fanyang587/MGL
https://github.com/JingZhang617/Joint_COD_SOD
https://github.com/fanyang587/UGTR
https://github.com/DUT-IIAU-OIP-Lab/PreyNet
https://github.com/thograce/BGNet
https://github.com/dlut-dimt/SegMaR
https://github.com/lartpang/ZoomNet
https://github.com/DengPingFan/SINet
https://github.com/taozh2017/FAPNet
https://github.com/fanyang587/MGL
https://github.com/ZhouHuang23/FSPNet
https://github.com/ChunmingHe/FEDER
http://ice.dlut.edu.cn/ZhaoWenda/CENet.html
https://github.com/vinthony/depth-distillation
https://github.com/wdzhao123/IS2CNet
https://github.com/shangcai1/SG
https://github.com/wdzhao123/DENets
https://github.com/wdzhao123/APL
https://github.com/jerysaw/M2CS
https://github.com/wdzhao123/MLDBD
https://github.com/xw-hu/DSC
https://github.com/lmhieu612/ADNET_demo
https://github.com/zijundeng/BDRAR
https://github.com/starkgate/Distraction-aware-Shadow-Detection
https://github.com/JinheeKIM94/AFFPN_release
https://github.com/xw-hu/FSDNet
https://github.com/Cralence/SILT
https://github.com/guanyingc/TOM-Net
https://github.com/xieenze/Segment_Transparent_Objects
https://github.com/xieenze/Trans2Seg
https://mhaiyang.github.io/CVPR2020_GDNet/index
https://github.com/hehao13/EBLNet
https://github.com/VankouF/RFENet
https://github.com/Mhaiyang/ICCV2019_MirrorNet
https://www.cs.cityu.edu.hk/~rynson/projects/mirror_glass/MirrorGlassDetection.html
https://github.com/Mhaiyang/CVPR2021_PDNet
https://github.com/guanhuankang/Learning-Semantic-Associations-for-Mirror-Detection
https://github.com/ReaFly/ACSNet
https://github.com/DengPingFan/PraNet
https://github.com/DebeshJha/ResUNetPlusPlus-with-CRF-and-TTA
https://github.com/Xiaoqi-Zhao-DLUT/MSNet
https://github.com/plemeri/UACANet
https://github.com/weijun88/SANet
https://github.com/midsdsy/LOD-Net
https://github.com/ntcongvn/CCBANet
https://github.com/ReaFly/LDNet
https://github.com/taozh2017/CFANet
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Table 2 Summary of essential characteristics for reviewed fully-supervised binary segmentation methods.
The superscript “∗” in the fifth column (code link) regards this repository does not provide pre-trained weights for
re-evaluating performance publicly and “N/A” represents that the code is not available.

No. Year Methods Publication
Code
Link

Core Components
Framework

Style
CRF

Deep
Supervision

Targeted
Loss

RGB Salient Object Detection

1

2
01

8

R3Net[33] IJCAI Pytorch Recurrent residual refinement network; Residual refinement block Parallel ✓ ✓
2 SFCN[247] IJCAI Caffe Symmetrical fully convolutional network; Structural loss Progressive ✓
3 BMPM[239] CVPR TensorFlow Multi-scale context-aware feature extraction module; Gated bi-directional message passing module Progressive
4 PiCANet[114] CVPR Pytorch Pixel-wise contextual attention network; Bidirectional LSTM Progressive ✓/✗ ✓
5 PAGRN[254] CVPR N/A Progressive attention; Multi-path recurrent feedback Progressive
6 DGRL[192] CVPR Caffe Localization-to-Refinement network; Recurrent localization network Progressive
7 RAS[17] ECCV Pytorch Residual learning; Reverse attention Progressive ✓

8

2
01

9

DEF[293] AAAI N/A Deep embedding features; Recursive feature integration network; Guided filter refinement network Progressive ✓
9 AFNet[49] CVPR Caffe Attentive feedback network; Boundary-enhanced loss Progressive ✓ ✓
10 BASNet[146] CVPR Pytorch Boundary-aware network; Hybrid loss (pixel-level, patch-level and map-level) Progressive ✓ ✓
11 CPD[212] CVPR Pytorch Cascaded partial decoder Progressive
12 MLMSNet[208] CVPR Pytorch Multi-task intertwined supervision; Mutual learning module Progressive ✓ ✓
13 CapSal[240] CVPR TensorFlow Leverage caption source; New dataset Progressive ✓
14 PoolNet[111] CVPR Pytorch Pooling-based modules; Edge detection branch Progressive ✓
15 PS[193] CVPR N/A Iterative top-down and bottom-up inference network Progressive ✓/✗ ✓
16 PFA[262] CVPR TensorFlow∗ Pyramid feature attention (SA&CA); Edge preservation loss Parallel ✓
17 SCRN[213] ICCV Pytorch Cross refinement unit; Edge-Aware models Parallel
18 BANet[163] ICCV Caffe Selectivity-invariance; Boundary-aware network; Integrated successive dilation module Parallel
19 HRSOD[232] ICCV Caffe New dataset; Global&Local network; Attended patch sampling Progressive
20 EGNet[260] ICCV Pytorch Edge guidance network; Complementary information modeling Progressive ✓
21 DUCRF[221] ICCV Caffe Deep unified CRF Saliency Model Progressive ✓
22 TSPOANet[119] ICCV N/A CapsulNet-based model; Explore the part-object relationships Progressive
23

20
20

PFPN[183] AAAI Pytorch Feature polishing module Progressive ✓
24 GCPANet[19] AAAI Pytorch Feature interweaved aggregation; Self refinement; Head attention; Global context flow Progressive ✓
25 F3Net[202] AAAI Pytorch Cross feature module; Cascaded feedback decode; Pixel position aware loss Progressive ✓ ✓
26 MSANet[284] AAAI N/A Attention transfer learning; Multi-type self-attention; Progressive ✓
27 MINet[136] CVPR Pytorch Aggregate interaction module; Self-interaction module; Consistency-enhanced loss Progressive ✓
28 ITSD[278] CVPR Pytorch Lightweight interactive two-stream decoder (Saliency&Contour); Adaptive contour loss Progressive ✓ ✓
29 LDF[203] CVPR Pytorch Body&Detail supervision; Iterative feature interaction network Progressive ✓
30 CSNet[53] ECCV Pytorch A flexible convolutional module ( gOctConv); light-weighted SOD model ( 100K parameters) Parallel
31 GateNet[269] ECCV Pytorch Gate Unit; Folded atrous convolution; Dual branch architecture Progressive&Parallel
32

20
21

PFS[126] AAAI N/A Pyramid shrinking decoder; Adjacent fusion module; Scale-aware enrichment module Progressive ✓
33 KRN[220] AAAI Pytorch Coarse locating module; Attention-based sampler; Fine segmenting module Progressive ✓ ✓
34 JSODCOD[91] CVPR Pytorch∗ Adversarial learning; Similarity measure module; Data interaction strategy Progressive ✓
35 Auto-MSFNet[242] ACM MM Pytorch NAS-based model; Progressive polishing loss Progressive ✓ ✓
36 CTDNet[273] ACM MM Pytorch Complementary trilateral decoder Progressive ✓ ✓
37 VST[116] ICCV Pytorch Transformer-based model; New token upsampling method Progressive ✓
38 HRRN[175] ICCV Pytorch Low-resolution saliency classification network; High-resolution refinement network Progressive ✓ ✓
39 iNAS[54] ICCV Pytorch NAS-based network; Device-aware search scheme; Latency group sampling Progressive ✓
40 SCA[159] ICCV Pytorch New dataset; Semantic scene context-aware framework Progressive
41

20
22

-2
02

3

PoolNet+[112] T-PAMI N/A Global guidance module; Feature aggregation module Progressive ✓
42 CSNet[22] T-PAMI Pytorch Light-weight holistic model; Dynamic weight decay scheme Parallel ✓
43 EDN[211] TIP Pytorch Extreme downsampling; Scale-correlated pyramid convolution Progressive ✓ ✓
44 RCSBNet[83] WACV Pytorch Stage-wise feature extraction module; New loss functions Progressive ✓ ✓
45 SHNet[253] ECCV N/A Saliency hierarchy modules; Hyper kernel generator; Transformer decoder Progressive ✓
46 PGNet[215] CVPR Pytorch One-stage framework for HRSOD; Cross-model grafting module; New dataset Progressive ✓
47 BBRF[127] TIP Pytorch∗ Bilateral extreme stripping encoder; Dynamic complementary attention module; Loop compensation strategy Progressive ✓
48 RMFormer[32] ACM MM Pytorch New dataset; Recurrent multi-scale transformer Progressive ✓ ✓
49 MENet[198] CVPR Pytorch Multiscale feature enhancement module; Iterative training strategy Progressive ✓ ✓

RGB-D Salient Object Detection

50

20
18

–2
01

9

PDNet[286] ICME TensorFlow RGB-based prior-model; Independent depth encoder Progressive
51 PCA[10] CVPR N/A Multi-level cross-modal fusion; Complementarity-aware fusion module Progressive ✓
52 AF[190] Access TensorFlow Switch map; Weighted RGB and Depth stream output Progressive ✓
53 cmSalGAN[77] TMM Pytorch Cross-modality generative adversarial network Progressive
54 MMCI[12] PR N/A Multi-path multi-modal fusion; Global&Local cross-modal fusion Progressive
55 TANet[11] TIP N/A Three-stream multi-modal fusion; Cross-modal distillation; Channel-wise attention Progressive ✓
56 CPFP[259] CVPR Caffe Contrast loss; Contrast prior; Fluid pyramid integration strategy Progressive ✓
57 DMRA[143] ICCV Pytorch Depth refinement block; Depth-induced multi-scale weighting module; Recurrent attention Progressive
58

20
20

D3Net[43] TNNLS Pytorch New dataset; Depth depurator unit Progressive
59 ICNet[97] TIP Caffe Information conversion module; Cross-modal depth-weighted combination block Progressive ✓
60 DisenFuse[9] TIP N/A Disentangled cross-modal fusion Progressive
61 TDESDF[7] TIP N/A Two-stage network; Depth estimation; Deep selective saliency fusion network Progressive
62 DPANet[18] TIP Pytorch Depth potentiality perception; Gated multi-modality attention module Progressive ✓
63 JL-DCF[51] CVPR Caffe/Pytorch Joint learning (JL) and densely-cooperative fusion (DCF) Progressive
64 UCNet[237] CVPR Pytorch Conditional probabilistic model; Saliency consensus; Depth correction network Progressive ✓
65 A2dele[144] CVPR Pytorch Depth distiller; Lightweight architecture Progressive
66 SSF[243] CVPR Pytorch Complimentary interaction module; Compensation-aware loss Progressive ✓ ✓
67 S2MA[115] CVPR Pytorch Self-Mutual Attention Progressive ✓
68 CoNet[75] ECCV Pytorch Collaborative learning framework Parallel
69 CMWNet[98] ECCV Caffe Cross-modal weighting network; RGB-depth interaction modules Progressive ✓
70 BBSNet[98] ECCV Pytorch Bifurcated backbone strategy; Depth-enhanced module Progressive
71 HDFNet[134] ECCV Pytorch Hierarchical dynamic filtering network; Hybrid enhanced loss Progressive ✓
72 DANet[271] ECCV Pytorch Single stream network; Depth-enhanced dual attention; Pyramidally attended module Progressive
73 PGAR[16] ECCV Pytorch Lightweight depth stream; Alternate refinement strategy; Guided residual block Progressive ✓
74 CMMS[94] ECCV TensorFlow Cross-modality feature modulation module; Adaptive feature selection module Progressive ✓
75 CAS-GNN[124] ECCV N/A Graph-based reasoning module Progressive
76 ATSA[241] ECCV Pytorch Flow ladder module; Depth attention module Progressive
77 DASNet[261] ACM MM Pytorch∗ Channel-aware fusion model; Depth awareness module; Depth-aware error loss Progressive ✓ ✓
78 FRDT[246] ACM MM Pytorch Interweave fusion module; Gated select fusion module; Adaptive fusion module Progressive ✓
79 MMNet[106] ACM MM Pytorch Cross-modal multi-stage fusion; Bi-directional multi-scale decoder Progressive ✓

80

2
02

1

HAINet[95] TIP Pytorch Hierarchical alternate interaction module Progressive ✓ ✓
81 CDNet[79] TIP Pytorch Depth estimation; Two-stage cross-modal fusion Progressive
82 UTA[272] TIP Pytorch Gated multi-scale predictor Channel-aware fusion model; Depth-aware error loss Progressive ✓ ✓
83 DSNet[204] TIP Pytorch Dynamic selective module; Cross-modal context module Progressive ✓ ✓
84 RD3D[15] AAAI Pytorch 3D encoder-decoder; Rich back projection paths Progressive
85 DSA2F[165] CVPR Pytorch∗ NAS-based model; Depth-sensitive attention Progressive
86 DCF[74] CVPR Pytorch Cross reference module; Depth calibration Progressive ✓ ✓
87 CMINet[238] ICCV Pytorch Multi-stage cascaded learning; Mutual information minimization regularizer; New dataset Progressive ✓ ✓
88 SPNet[280] ICCV Pytorch Specificity-preserving network; Cross-enhanced integration module; Multi-modal feature aggregation module Progressive ✓
89 DFM-Net[252] ACM MM Pytorch Depth quality-inspired feature manipulation Progressive ✓
90 TriTransNet[121] ACM MM Pytorch Triplet transformer embedding module; Spatial&Channel attention Progressive ✓ ✓
91 CDINet[235] ACM MM Pytorch RGB-induced detail enhancement; Depth-induced semantic enhancement; Dense decoding reconstruction Progressive
92

2
02

2

DCMF[184] TIP N/A Coss-modality long-range context information gathering module; Relation-based feature refinement module Progressive ✓ ✓
93 MAD[161] TIP Pytorch Modality-aware Decoder Progressive ✓
94 CIR-Net[27] TIP Pytorch Progressive attention guided integration unit; Importance gated fusion unit; Refinement middleware structure Progressive
95 DIGR-Net[24] TMM Pytorch Interference degree mechanism; Cross-modality interaction block; Mutually guided cross-level fusion module Progressive ✓
96 C2DFNet[245] TMM Pytorch Model-specific dynamic enhanced module; Scene-aware dynamic fusion module Progressive
97 MobileSal[210] T-PAMI Pytorch Compact pyramid refinement module; Implicit depth restoration Progressive ✓ ✓
98 DCBF[101] IJCV Pytorch Boundary-aware multimodal fusion module; New dataset Progressive ✓ ✓
99 MVSalNet[279] ECCV Pytorch Multi-view augmentation; Dynamic filtering module Progressive ✓
100 SPSN[90] ECCV Pytorch Superpixel prototype sampling; Reliance selection module Progressive ✓ ✓

101

2
02

3

HRTransNet[170] TCSVT Pytorch Coordinate-wise spatial position; Dual-direction short connection fusion module Progressive ✓
102 CAVER[137] TIP Pytorch Transformer-based information propagation path; Intra-Modal/Cross-Scale self-attentio; Inter-Modal cross-attention Progressive ✓
103 PopNet[214] ICCV Pytorch Structure Preserving; Local depth smoothing; Depth edge sharpening Progressive ✓
104 CATNet[164] TMM Pytorch Attention feature enhancement module; Cross-modalfusion module Progressive ✓

https://github.com/zijundeng/R3Net
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https://github.com/zhangludl/A-bi-directional-message-passing-model-for-salient-object-detection
https://github.com/Ugness/PiCANet-Implementation
https://github.com/TiantianWang/CVPR18_detect_globally_refine_locally
https://github.com/ShuhanChen/RAS-pytorch
https://github.com/ArcherFMY/AFNet
https://github.com/xuebinqin/BASNet
https://github.com/wuzhe71/CPD
https://github.com/JosephineRabbit/MLMSNet
https://github.com/zhangludl/code-and-dataset-for-CapSal
https://github.com/backseason/PoolNet
https://github.com/CaitinZhao/cvpr2019_Pyramid-Feature-Attention-Network-for-Saliency-detection
https://github.com/wuzhe71/SCRN
http://cvteam.net/projects/ICCV19-SOD/BANet.html
https://github.com/yi94code/HRSOD
https://github.com/JXingZhao/EGNet
https://github.com/xuyingyue/DeepUnifiedCRF_iccv19
https://github.com/chenquan-cq/PFPN
https://github.com/JosephChenHub/GCPANet
https://github.com/weijun88/F3Net
https://github.com/lartpang/MINet
https://github.com/moothes/ITSD-pytorch
https://github.com/weijun88/LDF
https://github.com/ShangHua-Gao/SOD100K
https://github.com/Xiaoqi-Zhao-DLUT/GateNet-RGB-Saliency
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https://github.com/JingZhang617/Joint_COD_SOD
https://github.com/LiuTingWed/Auto-MSFNet
https://github.com/zhaozhirui/CTDNet
https://github.com/nnizhang/VST/tree/main/RGB_VST
https://github.com/luckybird1994/HQSOD
https://github.com/guyuchao/iNAS
https://github.com/SirisAvishek/Scene_Context_Aware_Saliency
https://github.com/ShangHua-Gao/SOD100K
https://github.com/yuhuan-wu/EDN
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https://github.com/iCVTEAM/BBRF-TIP
https://github.com/DrowsyMon/RMFormer
https://github.com/yiwangtz/MENet
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https://github.com/Lucia-Ningning/Adaptive_Fusion_RGBD_Saliency_Detection
https://github.com/wangxiao5791509/cmSalGAN_PyTorch
https://github.com/JXingZhao/ContrastPrior
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https://github.com/MathLee/ICNet-for-RGBD-SOD
https://github.com/JosephChenHub/DPANet
https://github.com/kerenfu/JLDCF
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https://github.com/OIPLab-DUT/CVPR2020-A2dele
https://github.com/OIPLab-DUT/CVPR_SSF-RGBD
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https://github.com/jack-admiral/ACM-MM-FRDT
https://github.com/gbliao/MMNet
https://github.com/MathLee/HAINet
https://github.com/blanclist/CDNet
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https://github.com/Brook-Wen/DSNet
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https://github.com/sunpeng1996/DSA2F
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https://github.com/JingZhang617/cascaded_rgbd_sod
https://github.com/taozh2017/SPNet
https://github.com/zwbx/DFM-Net
https://github.com/liuzywen/TriTransNet
https://github.com/1437539743/CDINet-ACM-MM21
https://github.com/MengkeSong/MaD
https://github.com/rmcong/CIRNet_TIP2022
https://github.com/ssecv/DIGR-Net
https://github.com/DUT-IIAU-OIP-Lab/C2DFNet
https://github.com/yuhuan-wu/MobileSal
https://github.com/jiwei0921/HiBo-UA
https://github.com/Heart-eartH/MVSalNet
https://github.com/Hydragon516/SPSN
https://github.com/liuzywen/HRTransNet
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No. Year Methods Publication
Code
Link

Core Components
Framework

Style
CRF

Deep
Supervision

Targeted
Loss

Salient Object Detection in Optical Remote Sensing Images

105

20
19

–2
02

3

LV-Net[93] TGRS N/A New dataset; L-shaped module; V-shaped module Progressive
106 DAFNet[249] TIP Pytorch∗ New dataset; Dense attention fluid; Global context-aware attention Progressive ✓ ✓
107 PDF-Net[92] NC N/A parallel down-up fusion network; Dense connection Progressive
108 MFI-Net[283] TGRS N/A Multi-scale feature integration under the explicit and implicit assistance of salient edge cues Progressive ✓ ✓
109 RRNet[29] TGRS Pytorch Parallel multi-scale attention; Relational reasoning module Progressive ✓
110 GGRNet[118] PRCV N/A Global graph reasoning module Progressive
111 MJRBM[178] TGRS Pytorch New dataset; Multi-scale joint boundary and region model Progressive ✓ ✓
112 CorrNet[99] TGRS Pytorch Lightweight model; Correlation module; Dense lightweight refinement block Progressive ✓ ✓
113 MCCNet[96] TGRS Pytorch Multi-Content complementation module Progressive ✓ ✓
114 HFANet[191] TGRS N/A Hybrid encoder; Gated Fold-ASPP; Adjacent feature aligned module Progressive ✓
115 CIFNet[274] GRSL Pytorch Furcate skip-connection module; Expansion–integration module; Global leading attention module Progressive ✓ ✓
116 BAFS-Net[55] TGRS Pytorch Bidimensional attention modules; semantic-guided fusionmodules Progressive ✓

Camouflaged Object Detection

117

20
20

–2
02

1

SINet[41] CVPR Pytorch New dataset; Search and identification net Progressive
118 PFNet[130] CVPR Pytorch Distraction mining strategy; Positioning and focus network Progressive ✓ ✓
119 Rank-Net[125] CVPR Pytorch Camouflaged object ranking&localization; New dataset; Triplet tasks learning model Progressive ✓
120 MGL[233] CVPR Pytorch Mutual guidance knowledge; Graph-based interaction module Progressive
121 JSODCOD[220] CVPR Pytorch Adversarial learning; Similarity measure module; Data interaction strategy Progressive ✓
122 UGTR[225] ICCV Pytorch Bayesian learning into Transformer-based reasoning; Uncertainty-guided transformer reasoning model Progressive ✓
123 MirrorNet[222] Access N/A Object proposal; Bio-inspired attack stream Progressive ✓
124 TANet[147] TCSVT N/A Texture-aware refinement module; Boundary-consistency loss Progressive ✓ ✓
125 ERRNet[73] PR N/A Selective edge aggregation; Reversible re-calibration unit Progressive ✓ ✓

126

20
2
2

PreyNet[244] ACM MM Pytorch Bidirectional bridging interaction module; Predator learning Progressive ✓ ✓
127 BGNet[166] IJCAI Pytorch Boundary-related edge semantics; Edge-guidance feature module; Context aggregation module Progressive ✓ ✓
128 SegMaR[76] CVPR Pytorch Iterative refinement framework; Fixation and edge regions Progressive ✓
129 FM[277] CVPR N/A Frequency clues; Frequency enhancement module; High-order relation module Progressive ✓ ✓
130 ZoomNet[135] CVPR Pytorch Mixed-scale semantics; Scale integration unit; Hierarchical mixed-scale unit; Uncertainty-aware loss Progressive ✓
131 SINet-v2[40] T-PAMI Pytorch Texture enhanced module; Neighbor connection decoder; Group-reversal attention Progressive ✓ ✓
132 FAPNet[281] TIP Pytorch Boundary guidance module; Multi-scale feature aggregation module; Cross-level fusion and propagation module Progressive ✓ ✓
133 FindNet[104] TIP N/A Boundary enhancement module; Texture enhancement module Progressive ✓ ✓
134 R-MGL-V2[234] TIP Pytorch Graph-based mutual learning; Multi-source attention contextual recovery module Progressive ✓ ✓

135

20
2
3

FPNet[28] ACM MM N/A RGB and frequency domains; Fully frequency-perception module; Progressive refinement mechanism Progressive ✓
136 FSPNet[69] CVPR Pytorch Non-local token enhancement module; Feature shrinkage decoder; Adjacent interaction module Progressive ✓
137 FEDER[57] CVPR Pytorch Frequency attention module; Guidance-based feature aggregation module Progressive ✓ ✓
138 HitNet[63] AAAI Pytorch Recursive operation; Iteration weight scheme Progressive ✓ ✓

Defocus Blur Detection

139

20
1
8–

2
02

3

BTBNet[267] CVPR N/A New dataset; Fully convolutional; Multi-stream network Progressive
140 DeFusionNet[174] CVPR N/A Multi-scale deep features Parallel ✓
141 CENet[268] CVPR Caffe Cross-ensemble network Progressive ✓ ✓
142 R2MRF[173] AAAI N/A Residual refinement modules Parallel ✓
143 BR2Net[171] TMM N/A New dataset; Residual learning and refining module Progressive ✓
144 Depth-Distill[31] ECCV Pytorch Depth information; Depth Distillation; Selective reception fields block Progressive ✓ ✓
145 IS2CNet[256] TCSVT Caffe Hierarchical feature integration and bi-directional delivering mechanism Progressive ✓
146 SG[264] CVPR Pytorch New dataset; Dual adversarial discriminators; Unsupervised learning Progressive ✓ ✓
147 DENets[263] TIP Pytorch Deep ensemble networks; Self-negative correlation and error function Progressive ✓ ✓
148 APL[265] ECCV Pytorch Joint learning of defocus detection and defocus deblurring; Adversarial promoting learning framework Progressive ✓
149 MA-GANet[78] TIP N/A Generative adversarial training strategy Parallel ✓
150 M2CS[102] TIP Pytorch Global similarity discriminator; Local similarity discriminators Progressive ✓
151 MLDBD[266] TMM Pytorch Isomeric distillation mechanism; New dataset Progressive ✓

Shadow Detection

152

20
1
8–

2
02

3

ST-CGAN [185] CVPR N/A Shadow detection and shadow removal; Stacked conditional generative adversarial network; New dataset Progressive
153 DSC [67] CVPR Caffe Spatial recurrent neural network; Direction-aware spatial context Progressive ✓ ✓
154 ADNet [87] ECCV Pytorch GAN-based framework; Shadow detection&attenuation network Progressive ✓
155 BDRAR [289] ECCV Pytorch Recurrent attention residual module; Bidirectional feature pyramid network Progressive ✓ ✓
156 ARGAN [34] ICCV N/A Attentive recurrent generative adversarial network Progressive
157 DSDNet [275] CVPR Pytorch Distraction-aware shadow module Progressive ✓ ✓ ✓
158 AFFPN[84] SPL Pytorch Attentive feedback feature pyramid network Progressive ✓ ✓ ✓
159 RCMPNet[107] ACM MM N/A Relative confidence map prediction network Progressive ✓/✗ ✓
160 MIB[290] ICCV N/A Feature decomposition and reweighting; Self-supervised Progressive ✓ ✓
161 FSDNet[66] TIP Pytorch New dataset; Detail enhancement module Progressive
162 ECA[47] ACM MM N/A Effective-Context augmentation Progressive
163 SILT[227] ICCV Pytorch Global-local fusion; Shadow-aware filter Progressive ✓

Transparent Object Detection

164

20
1
8–

2
02

3 TOM-Net [8] CVPR Torch The first CNN-based model for transparent object detection; New dataset Progressive
165 TransLab [217] ECCV Pytorch New dataset; Boundary attention module Progressive ✓
166 Trans2Seg [218] IJCAI Pytorch New dataset; Transformer-based network Progressive ✓
167 Transfusion [291] ICCV N/A New dataset; RGB-D SLAM approach Progressive ✓

Glass Object Detection

168

2
0
2
0
–
2
0
2
3

GDNet [131] CVPR Pytorch New dataset; Large-field contextual feature integration module Progressive ✓ ✓
169 RCARP [108] CVPR N/A New dataset; Rich context aggregation module; Reflection-based refinement module Progressive ✓ ✓ ✓
170 EBLNet [58] ICCV Pytorch Refined differential module; Point-based graph convolution network Progressive ✓ ✓
171 PGSNet[230] TIP N/A Discriminability enhancement module; Focus-and-exploration based fusion module; New dataset Progressive ✓ ✓
172 RFENet[45] IJCAI Pytorch Selective mutual evolution module; Structurally attentive refinement Progressive ✓

Mirror Object Detection

173

2
0
1
9
–
2
0
2
3 MirrorNet [229] ICCV Pytorch New dataset; Contextual contrasted feature extraction module Progressive ✓ ✓ ✓

174 PMD [109] CVPR Pytorch∗ New dataset; Relational contextual contrasted local module; Edge detection and fusion module Progressive ✓ ✓ ✓
175 PDNet [129] CVPR Pytorch New dataset; Depth information; Dynamic weighting scheme Progressive ✓ ✓
176 LSA[56] CVPR Pytorch Associations exploration module; Quadruple-Graph module Progressive ✓

Polyp Segmentation (Medical Image)

177

20
20

–2
02

3

ACSNet[251] MICCAI Pytorch∗ Local context attention; Global context Module; Adaptive selection module Progressive ✓ ✓
178 PraNet[42] MICCAI Pytorch Parallel partial decoder; Recurrent reverse attention Progressive ✓ ✓
179 ResUNet++[71] JBHI TensorFlow∗ Parallel partial decoder; Recurrent reverse attention Progressive ✓ ✓
180 TransFuse[255] MICCAI N/A combines Transformers and CNNs in a parallel style; BiFusion module Progressive ✓ ✓
181 MSNet[270] MICCAI Pytorch Multi-scale subtraction module; LossNet Progressive ✓
182 EMS-Net[189] EMBC N/A Receptive field block; Local context attention Progressive ✓ ✓
183 APRNet[154] EMBC N/A Alternative prediction refinement network; Prediction residual refinement modules Progressive ✓ ✓
184 UACANet[85] ACM MM Pytorch Parallel axial attention; Uncertainty augmented context attention Progressive ✓ ✓
185 SANet[201] MICCAI Pytorch Shallow attention; e Color exchange operation; Probability correction strategy Progressive ✓
186 LOD-Net[21] MICCAI Pytorch∗ Oriented-derivatives feature Progressive ✓
187 CCBANet[132] MICCAI Pytorch∗ Cascading Context module; Attention balance module Progressive ✓ ✓
188 HRENet[153] MICCAI N/A Context enhancement module; Adaptive feature aggregation module; Structure consistency aware loss Progressive ✓ ✓
189 SCR-Net[206] AAAI N/A Semantic calibration module; Semantic refinement module Progressive ✓
190 TRFR-Net[155] MICCAI N/A Domain-invariant feature decomposition module; Task-relevant feature replenishment module; Polyp-aware adversarial learning module Progressive ✓ ✓
191 LDNet[250] MICCAI Pytorch∗ Dynamic kernel generation and updating scheme; Lesion-aware cross-attention module; Efficient self-attention module Progressive ✓ ✓
192 BoxPolyp[200] MICCAI N/A Consistency loss; Fusion filter sampling module Progressive ✓
193 PPFormer[6] MICCAI N/A PP-guided self-attention; Local-to-Global mechanism Progressive ✓ ✓
194 CFANet[282] PR Pytorch Cross-level feature fusion module; Boundary aggregated module Parallel ✓ ✓
195 EMS-Net[189] JBHI N/A Random multi-scale training strategy; Offline dynamic class activation mapping Progressive ✓ ✓
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2.2 Fully Supervised Binary
Segmentation Models

We first formulate the image-based binary seg-
mentation problem. Formally, let X and Y denote
the input space and output segmentation space,
respectively. Fully supervised learning-based mod-
els generally seek to learn an ideal image-to-
segment mapping f∗ : X 7→ Y through directly
utilizing ground truth masks as supervision signal.

In Tab. 1 and Tab. 2, we categorize recent
fully supervised models. Through the analyses
of 141 methods in 10 branches, we summarize
some instructive findings: I) Single task learn-
ing (STL) is still the main learning paradigm in
binary segmentation. Compared with STL, the
proportion of MTL-based methods is only 34/141
and they finish MTL via cooperating with bound-
ary prediction or depth estimation usually. It is
worth noting that MTL-based RGB SOD meth-
ods have reached the 6/9 scale in 2021. We believe
that the potential of MTL is huge, and more
effective and richer strategies will emerge in the
future under the continuous efforts of researchers.
II) Our GateNet is the only one mixes both
progress and parallel structures among 141 meth-
ods, thereby enjoying the advantages of both.
Most methods still adopt the single progressive
style. III) Conditional random field (CRF) gradu-
ally disappear in many models. Only some shadow
and mirror detection methods adopt the CRF as
post-processing. IV) Deep supervision becomes
a popular supervision approach. 73/141 methods
build the network with side outs to perform deep
supervision. On one hand, deep supervision [89]
is originally designed to speed up network con-
vergence. On the other hand, it may bring extra
performance gain for most models. V) Targeted
loss function is conducive to performance improve-
ment. 72/141 models directly adopt previous or
re-design a new targeted loss, such as the hybrid
loss [146], consistency-enhanced loss [136], pixel
position aware loss [202], etc. It is clear that
there is increasing competition in the research of
targeted loss.

2.3 Multi-scale Feature Extraction

The multi-scale paradigm is mainly inspired by
the scale-space theory that has been widely val-
idated as an effective and theoretically sound

framework. It is well suited for addressing nat-
urally occurring scale variations. Common forms
in the field of computer vision mainly include
the image pyramid [2] and the feature pyra-
mid [110, 149]. Although the former has shown
good performance, its application is limited by
high computational and latency costs associated
with the multi-input parallel processing paradigm,
which makes it gradually give way to the more
efficient latter in the era of deep learning. The
feature pyramid can be roughly divided into two
categories according to the form, namely, the
inter-layer pyramid and the intra-layer pyramid.
The former is based on features with different
scales extracted by the feature encoder, such
as the U-shape [110, 136, 140, 145, 149, 254]
architecture. In this way, the internal cross-layer
information propagation path progressively inte-
grates semantic context and texture details from
diverse scale representations. The intra-layer pyra-
mid [13, 228, 239, 257, 271] can enhance the
diversity of semantic content by constructing the
multi-path structure within a layer to obtain a rich
combination of receptive fields. Its good plugga-
bility has also made it an important component
in the architecture design of modern segmentation
methods. Recently, the atrous spatial pyramid
pooling module (ASPP) [13] and its variants [138,
151, 168, 199, 209, 228, 271, 294], which typify
this structure, are widely applied in many seg-
mentation tasks and networks. Some methods [84,
108, 130, 237, 239, 289] insert several ASPP mod-
ules into the encoder/decoder blocks of different
levels, while some ones [33, 49, 58, 75, 125, 143]
install it on the highest-level encoder block. As
a basic component of ASPP, atrous convolution
has the advantage of enlarging the receptive field
to obtain large-scale features without increasing
the computational cost compared to the vanilla
convolution. Nevertheless, the repeated stride and
pooling operations already make the top-layer
features lose much fine information. With the
increase of atrous rate, the correlation of sampling
points further degrades, which leads to difficul-
ties in capturing the changes of image details
(e.g., lathy background regions between adjacent
objects or spindly parts of objects). In this work,
we propose a folded atrous convolution to alleviate
these issues and achieve a local-in-local effect. The
folded atrous convolution can seamlessly replace
the original atrous convolution in ASPP and other
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variants (e.g., DenseASPP [228], PAFE [271]),
thus significantly improving performance.

2.4 Gated Mechanisms

The gated mechanism plays an important role in
controlling the flow of information and is widely
used in the long short term memory (LSTM).
In [3], the gate unit combines two consecutive
feature maps of different resolutions from the
encoder to generate rich contextual information.
And the gated mechanism is also integrated into
the block feedback mechanism to bridge multi-
ple iterations in the recurrent architecture [82].
Zhang et al. [239] adopt gate function to con-
trol the message passing when combining fea-
ture maps at all levels of the encoder. Chen et
al. [18] propose a gate function controller to focus
on regulating the fusion rate of the cross-modal
information. Zhang et al. [246] utilize the gated
select fusion module to selectively process the
useful information from two modal features in
low-levels. Due to the ability to filter informa-
tion, the gated mechanism can also be seen as
a special kind of attention mechanism. Wang et
al. [194] exploit the pyramid attention module
to enhance saliency representations for each layer
in the encoder and enlarge the receptive field.
Chen et al. [19] propose a head attention mod-
ule to reduce information redundancy and enhance
the top layers features by leveraging both spa-
tial and channel-wise attention. Zhang et al. [254]
apply both spatial and channel attention to each
layer of the decoder. Liu et al. [115] construct
both self-attention and mutual-attention in a non-
local [197] style for extracting the complementary
information between the different modalities. Zhu
et al. [289] design the recurrent attention residual
module to combine and process spatial contexts in
two adjacent CNN layers. Zhang et al. [251] apply
both the local context attention and SE-like [62]
channel-wise attention for context selection. Tae-
hun et al. [85] propose the uncertainty augmented
context attention module to incorporate uncer-
tain area for rich semantic feature extraction.
More description about attention-based methods
can found in Tab. 2. In general, the above meth-
ods unilaterally consider the information interac-
tion between different layers or intra-layer in the
encoder or decoder. We integrate the features from
the encoder and the decoder to formulate gate

function, which has the function of block-wise
attention and models the overall distribution of
all blocks in the network from the global perspec-
tive. However, while previous methods utilize the
block-specific features to compute dense attention
weights for the corresponding block, they directly
feed the encoder features into the decoder and
do not consider their mutual interference. Our
proposed gate unit can naturally balance their
contributions, thereby suppressing the response of
the encoder to background regions. Experimental
results in Fig. 8 and Fig. 9 intuitively demonstrate
the effect of multi-level gate units on the above
two aspects, respectively.

3 Proposed Method

The gated network architecture is shown in Fig. 2,
in which encoder blocks, transition layers, decoder
blocks and gate units are denoted as Ei, Ti, Di

and Gi, respectively (i ∈ {1, 2, 3, 4, 5} indexes
different levels). Their output feature maps are
denoted as Ei, T i, Di and Gi, respectively. The
final prediction is obtained by combining the FPN
branch and the parallel branch.

3.1 Network Overview

Encoder Network. In our model, the encoder is
based on a common pretrained backbone network,
e.g., the VGG [158], ResNet [59] or ResNeXt [219].
We take the VGG-16 network as an example,
which contains thirteen Conv layers, five max-
pooling layers and two fully connected layers. In
order to fit saliency detection task, similar to most
previous approaches [60, 239, 248, 254], we cast
away all the fully-connected layers of the VGG-16
and remove the last pooling layer to retain details
of last convolutional layer.
Decoder Network. The decoder comprises three
main components: i) the FPN branch, which con-
tinually fuses different level features from T 1 ∼ T 5

by element-wise addition; ii) the parallel branch,
which combines the saliency map of the FPN
branch and the feature maps of transition lay-
ers by cross-channel concatenation (At the same
time, multi-level gate units (G1 ∼ G5) are
inserted between the transition layer and the
decoder layer); iii) the Fold-ASPP module, which
improves the original atrous spatial pyramid pool-
ing (ASPP) by using a “Fold” operation. It can
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Fig. 2 Overall architecture of the gated network. It consists of five encoder blocks (E1 ∼ E5), five transition layers
(T1 ∼ T5), five gate units (G1 ∼ G5), five decoder blocks (D1 ∼ D5) and the Fold-ASPP module. We employ twice
supervision in this network. One acts at the end of the FPN branch D1. The other is used to guide the fusion of the two
branches.
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Fig. 3 Detailed illustration of the gate unit. Di+1 indi-
cates feature maps of the previous decoder block. S○ is
sigmoid function.

Hard-Supervison

IN

Gate Units -v1 Gate Units -v2

IN

Hard-Supervison

Pattern of Gate Value Pattern of Gate Value

Fig. 4 Architecture comparison between the Gated FPN
with gate units-v1 and gate units-v2.

take advantage of semantic features learned from
E5 to provide multi-scale information to the
decoder.

3.2 Gated Dual Branch

The gate unit can control the message pass-
ing between scale-matching encoder and decoder
blocks. By combining the feature maps of the
previous decoder block, the gate value also charac-
terizes the contribution that the current block of
the encoder can provide. Fig. 3 shows the internal
structure of the proposed gate unit. In particular,
the aggregated encoder feature E and decoder fea-
ture Di+1 are integrated to obtain feature F i, and
then the output is fed into two branches, which
includes a series of convolution, activation and
pooling operations, to compute a pair of gate val-
ues Gi. The entire gated process can be formulated
as,

E = Conv(Cat(E1, E2, E3, E4, E5)), (1)

Gi =

{
P (S(Conv(Cat(E,Di+1)))) if i = 1, 2, 3, 4
P (S(Conv(Cat(E, T i)))), if i = 5

(2)
where Cat(·) is the concatenation operation
among channel axis, Conv(·) is the convolution
layer, S(·) is the element-wise sigmoid function,
and P (·) is the global average pooling. The output
channel of Conv(·) in Eq. 2 is 2. The resulted gate
vector Gi has two different elements which corre-
spond to two gate values in Fig. 3. Given the gate
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Fig. 5 Illustration of different decoder architectures.
(a) Progressive structure. (b) Parallel structure. (c) Dual
branch structure.

values, we can apply them to the FPN branch and
the parallel branch to weight the transition-layer
features T 1 ∼ T 5, which are generated by exploit-
ing 3 × 3 convolution to reduce the dimension of
E1 ∼ E4 and the Fold-ASPP to finely process E5

(See Fig. 2 for details). Through multi-level gate
units, we can suppress and balance the informa-
tion flowing from different encoder blocks to the
decoder.

Compared to the ECCV version [269] of Gate
Units-v1, we modify the input feature maps of the
current encoder block Ei to the all-level aggre-
gated feature maps E. As shown in Fig. 4, the
Gated FPN with Gate Units-v2 enjoys bidirec-
tional soft supervision, which motivates the gating
values of each layer to consider their correspond-
ing contributions from a global perspective, rather
than the local perspective in Gate Unit-v1. In this
way, the cooperation among the various layers is
closer, thereby, making the optimization of the
network more efficient.

Generally, binary segmentation methods usu-
ally adopt the progressive or parallel structure as
decoder architecture, as shown in Fig. 5(a, b). Pro-
gressive style is more conducive to the localization
of the objects through the high-level feature guid-
ance, while the parallel style is easier to restore
details by making full use of low-level features.
As can be seen from Tab. 2, previous methods
only adopt either progressive or parallel mode and
ignore the advantages brought by the other. In this
work, we mix the two structures to build a dual
branch decoder to overcome the above restrictions.
We briefly describe the FPN branch. Taking Di

as an example, we firstly apply bilinear interpola-
tion to upsample the higher-level feature Di+1 to

87654321
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Fig. 6 Illustration of the folded atrous convolution. We
use 1○, 2○ and 3○ to respectively indicate “Fold” opera-
tion, atrous convolution and “Unfold” operation. 4○ shows
the comparison between atrous convolution (Left) and the
folded atrous convolution (Right).

the same size as T i. Next, to decrease the num-
ber of parameters, T i is reduced to 32 channels
and fed into gate unit Gi. Lastly, the gated fea-
ture is fused with the upsampled feature of Di+1

by element-wise addition and convolutional layers.
This process can be formulated as:

Di =

{
Conv(Gi

1 · T i + Up(Di+1)) if i = 1, 2, 3, 4
Conv(Gi

1 · T i), if i = 5,
(3)

where D1 is a single-channel feature map with the
same size as the input image.

In the parallel branch, we firstly upsample
T 1 ∼ T 5 to the same size of D1. Next, the multi-
level gate units are followed to weight the corre-
sponding transition-layer features. Lastly, we com-
bine D1 and the gated features by cross-channel
concatenation. The whole process is written as:

FCat = Cat(D1, Up(G1
2 · T 1), Up(G2

2 · T 2),

Up(G3
2 · T 3), Up(G4

2 · T 4), Up(G5
2 · T 5)).

(4)

The final saliency map SF is generated by inte-
grating the predictions of the two branches with a
residual connection as shown in Fig. 5(c),

SF = S(Conv(FCat) + D1)), (5)

where S(·) is the element-wise sigmoid function.
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Fig. 7 Overall pipeline of the two-stream gated network. Firstly, we use two independent encoders to extract features for
each modality separately. Fold-ASPP is followed and embedded in the top layer of the encoder. And then, we utilize multi-
level gate units to control both cross-modal fusion and fused information transmitted to the decoder. The final prediction
is yielded by the gated dual branch.

3.3 Folded Atrous Convolution

In order to obtain robust segmentation results
by integrating multi-scale information, atrous spa-
tial pyramid pooling (ASPP) is proposed in
Deeplab [13]. And many works [58, 75, 84, 108,
125, 130, 143, 237, 239, 289] also show its effec-
tiveness in different binary segmentation branches.
The ASPP uses multiple parallel atrous convo-
lutional layers with different dilation rates. The
sparsity of atrous convolution kernel, especially
when using a large dilation rate, results in that the
association relationships among sampling points
are too weak to extract stable features. In this
paper, we apply a simple “Fold” operation to effec-
tively relieve this issue. We visualize the folded
atrous convolution structure in Fig. 6, which not
only further enlarges the receptive field but also
extends each valid sampling position from an
isolate point to a 2 × 2 connected region.

Let X represent feature maps with the size of
N × N × C (C is the channel number). We slide
a 2 × 2 window on X in stride 2 and then con-
duct atrous convolution with kernel size K × K
in different dilation rates. Fig. 6 shows the com-
putational process when K = 3 and dilation rate
is 2. Firstly, we collect 2 × 2 × C feature points
in each window from X and then it is stacked by

channel direction, we call this operation “Fold”,
which is shown in Fig. 6 1○. After the fold opera-
tion, we can get new feature maps with the size of
N/2×N/2×4C. A point on the new feature maps
corresponds to a 2× 2 area on the original feature
maps. Secondly, we adopt an atrous convolution
with a kernel size of 3 × 3 and dilation rate is 2.
Followed by the reverse process of “Fold” which is
called “Unfold” operation, the final feature maps
are obtained. By using the folded atrous convolu-
tion, in the process of information transfer across
convolution layers, more contexts are merged and
the certain local correlation is also preserved,
which provides the fault-tolerance capability for
subsequent operations.

The Fold-ASPP is only equipped on the top
of the encoder network, which consists of three
folded atrous convolutional layers with dilation
rates [2, 4, 6] to fit the size of feature maps. Just
as group convolution [219] is a trade-off between
depthwise convolution [26, 61] and vanilla convolu-
tion in the channel dimension, the proposed folded
atrous convolution is a trade-off between atrous
convolution and vanilla convolution in the spatial
dimension.
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3.4 Supervision

We use the pixel position aware loss Lppa [202]
which have been widely adopted in segmentation
tasks. We use the same definitions as in [42, 202,
237, 270, 280]. As shown in Fig. 2, we apply super-
vision for both the intermediate prediction from
the FPN branch and the final prediction from the
dual branch. In the dual branch decoder, since
the FPN branch gradually combines all-level gated
encoding and decoding features, it has very power-
ful prediction ability. We expect that it can predict
salient objects as accurately as possible under the
supervision of ground truth. While the parallel
branch only combines the gated encoding features,
which is helpful to remedy the ignored details with
the design of residual structure. Moreover, the
supervision on D1 can drive gate units to learn the
weight of the contribution of each encoder block
to the final prediction. The total loss L could be
written as:

L = Ls1
ppa + Lsf

ppa, (6)

where Ls1
ppa and Lsf

ppa are respectively used to reg-
ularize the output of the FPN branch and the final
prediction.

3.5 Two-Stream Network

To finish some two-source input tasks, e.g., RGB-
D salient object detection, we extend the GateNet
to a two-stream architecture to further demon-
strate its effectiveness. The proposed two-stream
GateNet is shown in Fig. 7. Compared with
the single-stream network for single source input
tasks, there are two main differences: (1) We
add an extra encoder to extract features of other
modals. (2) We convey the output features from
the encoding blocks of two modalities to the
gate unit to achieve cross-modal fusion at each
level. The motivation of embedding gate units
when performing cross-modal fusion is straightfor-
ward, that is, different modalities present different
characteristics in each layer of the encoder, and
low-quality modal features can interfere with the
other one, leading to build a poor decoder. The
form and composition of all gate units are the
same as Fig. 3 and Eq. 2 except that the input
features are different.

4 Experiments

4.1 Datasets

For the training and test dataset, we follow the set-
tings of the most state-of-the-art methods [85, 116,
121, 131, 178, 217, 225, 229, 263, 275] in Tab. 1
on each binary segmentation task. And the details
about these datasets can find in Tab. 3.

4.2 Evaluation Metrics

There are ten popular metrics used in differ-
ent binary segmentation branches. F-measure [1]
(Fmax

β , Fmean
β ), weighted F-measure [128] (Fω

β ),
S-measure [38] (Sm), E-measure [39] (Em) and
MAE [142] (M) are widely used in salient
object detection, camouflaged object detection
and defous blur detection tasks. IOU and Dice
scores are popular with medical image segmen-
tation. BER [181] and Pixel Accuracy (PA) are
more commonly used for shadow, mirror, glass and
transparent detection. The lower value is better
for the BER and MAE, and higher is better for
others.
• Pixel Accuracy (PA) is calculated based on
the binarized prediction mask and ground-truth:

PA =
TP + TN

TP + TN + FP + FN
, (7)

where TP, TN, FP, FN denote true-positive,
true-negative, false-positive, and false-negative,
respectively.
• F-measure (Fβ) [1] is a metric that compre-
hensively considers both precision and recall:

Fβ =
(1 + β2)Precision× Recall

β2Precision + Recall
, (8)

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, (9)

where β2 is set to 0.3 as suggested in [1] to empha-
size the precision. Some methods report the max-
imum F-measure (Fmax

β ) across the binary maps
of different thresholds or the mean F-measure
(Fmean

β ) score by an adaptive threshold.
• weighted F-measure (Fω

β ) [128] is proposed
to improve the metric F-measure. It assigns dif-
ferent weights (ω) to precision and recall across
different errors at different locations, considering
the neighborhood information:

Fω
β =

(1 + β2)Precisionω × Recallω

β2Precisionω +Recallω
. (10)
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Table 3 Summary of essential characteristics about popular binary segmentation datasets.

Dataset Year Publication #Image Core Description Role

RGB Salient Object Detection
*

MSRA10K [23] 2015 TPMAI 10,000 Large scale; Multi-object Train
ECSSD [223] 2015 CVPR 1,000 Semantically meaningful but structurally complex natural contents Test
HKU-IS [100] 2015 CVPR 4,447 Multiple disconnected salient objects; Overlapping the image boundary Test

PASCAL-S [105] 2014 CVPR 850 Selected from the PASCAL VOC2010 val set Test
DUT-OMRON [224] 2013 CVPR 5,168 Complicated background and diverse content Test

DUTS [188] 2017 CVPR 15,572 Large-scale; Complex scenarios with high-diversity contents; Most SOD models are typically trained on it Train&Test

RGB-D Salient Object Detection
*

NJUD [80] 2014 ICIP 1,985 Complex objects and challenging scenarios; Selected from 3D movies, the Internet, and photographs taken by a Fuji W3 stereo camera Train&Test
NLPR [141] 2014 ECCV 1,000 There may exist multiple salient objects in each image; Captured by Kinect Train&Test

DUTLF-D [143] 2019 ICCV 1,200 Contains 800 indoor and 400 outdoor scenes paired with the depth map and binary ground truth Trian&Test
STERE [133] 2012 CVPR 1,000 The first stereoscopic photo collection; Images downloaded from the Internet Test

SIP [43] 2021 TNNLS 929 High-resolution images; Contain multiple salient persons per image Test
SSD [287] 2017 ICCVW 80 Collected from three stereo movies Test

RGBD135 [25] 2014 ICIMCS 135 Consists of seven indoor scenes; Captured by Kinect Test
LFSD [103] 2014 CVPR 100 Manly built for saliency detection on the light filed Test

ORSI Salient Object Detection
*

ORSSD [93] 2019 TGRS 800 Diverse spatial resolution; Background is cluttered and complicated; Type of salient objects is various; The number and size of salient objects are variable Train&Test
EORSSD [249] 2021 TIP 2,000 Multiple salient objects in one image; A number of small objects; More abundant scenarios; Imaging interferences; Specific circumstances Train&Test

ORSI-4199 [178] 2021 TGRS 4,199 Large-scale; More challenges with background interference samples Train&Test

Camouflaged Object Detection
*

CHAMELEON [160] 2018 Unpublished Manuscript 76 The images were collected from the Internet via the Google search engine Test
CAMO [88] 2019 CVIU 2,500 Eight categories Train&Test

COD10K [41] 2020 CVPR 10,000 Large-scale; Broader size distribution; Global/Local contrast; Rich sub-classes; A large number of Full HD 1080p images Train&Test
NC4K [125] 2021 CVPR 4,121 Large-scale; Evaluate the generalization ability of existing models Test

Defocus Blur Detection
*

CUHK [156] 2014 CVPR 704 Cluttered backgrounds and various scenes Train&Test
DUT [267] 2018 CVPR 1,100 Multi-scale focused areas Train&Test

Shadow Detection
*

UCF [288] 2010 CVPR 245 Cluttered backgrounds and various scenes Test
ISTD [186] 2018 CVPR 1,870 Both shadow detection and removal; Only 135 background scenes Train&Test
SBU [182] 2016 ECCV 4,727 The largest shadow dataset covering general scenes; A wider variety of scenes Train&Test

Transparent Object Detection
*

Trans10K [217] 2020 ECCV 10,428 Two categories (stuff and things); Large-scale realworld images; Complex scenarios Train&Test
Trans10K-v2 [218] 2021 IJCAI 10,428 Semantic Segmentation; 11 fine-grained glass image categories with a diverse scenario and high resolution Train&Test

Glass Detection
*

GDD [131] 2020 CVPR 3,916 Large-scale; Both indoor and outdoor scenes; Various types of common glass; Glass located at different positions of an image Train&Test

Mirror Detection
*

MSD [229] 2019 ICCV 4,018 Large-scale; Both indoor and outdoor scenes; Different mirror shapes and multiple mirrors; Low global color contrast Train&Test

Polyp Segmentation
*

CVC-ColonDB [167] 2015 TMI 380 Colonoscopy images each with a polyp inside; Selected from 15 short colonoscopy videos Test
CVC-ClinicDB [5] 2015 CMIG 612 Images from 31 colonoscopy clip; Images of size 576 × 768 Train&Test

EndoScene [180] 2017 JHE 912 Images from CVC-ColonDB and CVC-ClinicDB and are reannotated; Extend the old annotations to account for lumen, and specular highlights Train&Test
ETIS [157] 2014 IJCARS 196 An early established dataset for early diagnosis of colorectal cancer Test
Kvasir [72] 2020 MMM 1,000 Existing largest-scale dataset Train&Test

• S-measure (Sm) [38] evaluates the spatial
structure similarity by combining the region-aware
structural similarity Sr and the object-aware
structural similarity So:

Sm = α× So + (1− α)× Sr, (11)

where α is empirically set to 0.5.
• E-measure (Em) [39] can jointly capture
image level statistics and local pixel matching
information:

QS =
1

W×H

∑W

i=1

∑H

j=1
ϕS(i, j), (12)

where ϕS is the enhanced alignment matrix,
reflecting the correlation between prediction S
and the ground truth G after subtracting their
global means, respectively.
• IOU is the most common metric for evaluating
classification accuracy:

IOU =
TP

TP + FP + FN
. (13)

• Dice is a statistic used to gauge the similarity
of two samples and become the most used metric

in validating medical image segmentation:

Dice =
2TP

FP + 2TP + FN
. (14)

• Balanced error rate (BER) [181] is a
common metric to evaluate shadow detection per-
formance, where shadow and non-shadow regions
contribute equally to the overall performance
without considering their relative areas:

BER = (1− 1

2
(

TP

TP + FN
+

TN

TN + FP
)). (15)

• MAE (M) [142] measures the average absolute
difference between the prediction S ∈ [0, 1]W×H

and the ground truth G∈{0, 1}W×H pixel by pixel:

MAE =
1

W×H

∑W

i=1

∑H

j=1
|G(i, j)−S(i, j)|. (16)

In fact, all above metrics can be used for any
binary segmentation sub-task. In this paper, we
are the first to introduce all ten metrics into the
quantitative comparison to provide a comprehen-
sive performance evaluation.
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4.3 Implementation Details

We use the PyTorch framework to implement our
models on one RTX 3090 GPU for 100 epochs. The
input resolutions of images are resized to 352×352
and we employ a general multi-scale training strat-
egy as most methods [19, 42, 125, 202, 270, 280].
We adopt some image augmentation techniques to
avoid overfitting, including random flipping, rotat-
ing, and border clipping. For the optimizer, we
use the Adam [86]. For the learning rate, initial
learning rate is set to 0.0001. We adopt the “step”
learning rate decay policy, and set the decay size
as 30 and decay rate as 0.9. For any sub-tasks,
the above training strategy is used for all the
gated network models involved in this paper. The
difference among these models is only in the mini-
batch size due to adopting different backbones.
Specifically, the mini-batch size settings in the
gatenet using VGG-16, ResNet-50, Res2Net-50,
and ResNeXt-101 as the backbone are 8, 24, 24
and 16, respectively. The source code can be avail-
able at https://github.com/Xiaoqi-Zhao-DLUT/
GateNet-RGB-Saliency.

4.4 Performance

We compare our models with state-of-the-art
approaches in terms of ten metrics on all test sets
corresponding for each binary segmentation task
in Tab. 4 - Tab. 11. Since there are many test sets
for RGB SOD, RGB-D SOD and polyp segmenta-
tion, we not only compare the performance under
each metric, but also count the proportion of top
3 and top 1 performance to get an overall evalua-
tion. Some quantitative analyses are as follows:

• In Tab. 4, among 50 scores of all RGB SOD
datasets, our GateNet achieves significant perfor-
mance improvement compared to the second best
method CTDNet [273] in terms of top 3 (49/50
vs. 37/50) and top 1 (40/50 vs. 1/50), respec-
tively. And, we still consistently outperform the
VST [231] model even if it is equipped with a
stronger transformer backbone T2T [231].
• Tab. 5 shows performance comparisons on five
polyp segmentation datasets. Our GateNet con-
sistently outperforms the second best approach
UACANet [85] under top 3 (49/50 vs. 39/50) and
top 1 (30/50 vs. 13/50), respectively. In particu-
lar, GateNet achieves a predominant performance

Table 4 Quantitative comparison of different RGB SOD
methods. Top 3 and Top 1 scores are highlighted in blue
and red, respectively.

Metric

F3Net ITSD MINet KRN Auto-MSF LDF VST CTDNet GateNet
[202] [278] [136] [220] [242] [203] [116] [273]
AAAI CVPR CVPR AAAI ACMMM CVPR ICCV ACMMM –
2020 2020 2020 2021 2021 2020 2021 2021 –
Res-50 Res-50 Res-50 Res-50 Res-50 Res-50 T2T Res-50 Res-50

D
U
T
S
[1
8
8
]

PA ↑ 0.966 0.962 0.965 0.966 0.968 0.968 0.967 0.968 0.972
Fmax
β ↑ 0.891 0.883 0.884 0.877 0.898 0.898 0.890 0.897 0.911

Fmean
β ↑ 0.840 0.804 0.828 0.856 0.851 0.855 0.818 0.853 0.857
Fω
β ↑ 0.835 0.824 0.825 0.841 0.847 0.845 0.828 0.847 0.864

Sm ↑ 0.887 0.883 0.883 0.876 0.891 0.891 0.895 0.891 0.906
Em ↑ 0.918 0.898 0.917 0.931 0.926 0.929 0.916 0.928 0.931

IOU ↑ 0.793 0.783 0.782 0.779 0.799 0.799 0.802 0.800 0.828
Dice ↑ 0.854 0.844 0.845 0.855 0.864 0.861 0.848 0.864 0.878
BER ↓ 0.062 0.065 0.069 0.072 0.064 0.064 0.060 0.061 0.052

M ↓ 0.035 0.041 0.037 0.034 0.034 0.034 0.037 0.034 0.030

D
U
T
-O

M
R
O
N

[2
2
4
] PA ↑ 0.949 0.942 0.946 0.951 0.953 0.950 0.946 0.949 0.952

Fmax
β ↑ 0.813 0.821 0.810 0.798 0.827 0.820 0.825 0.826 0.824

Fmean
β ↑ 0.766 0.756 0.756 0.778 0.783 0.774 0.756 0.779 0.781
Fω
β ↑ 0.747 0.750 0.738 0.757 0.765 0.752 0.755 0.762 0.765

Sm ↑ 0.837 0.839 0.832 0.831 0.845 0.838 0.849 0.842 0.847
Em ↑ 0.876 0.867 0.873 0.876 0.889 0.881 0.872 0.884 0.882

IOU ↑ 0.710 0.715 0.699 0.705 0.723 0.711 0.731 0.720 0.730
Dice ↑ 0.772 0.778 0.764 0.776 0.786 0.775 0.783 0.787 0.786
BER ↓ 0.101 0.091 0.106 0.107 0.098 0.102 0.088 0.095 0.097

M ↓ 0.053 0.061 0.056 0.050 0.049 0.052 0.058 0.052 0.050

E
C
S
S
D

[2
2
3
]

PA ↑ 0.969 0.969 0.969 0.967 0.967 0.968 0.973 0.969 0.977
Fmax
β ↑ 0.945 0.947 0.948 0.941 0.946 0.950 0.951 0.950 0.960

Fmean
β ↑ 0.925 0.895 0.924 0.929 0.922 0.930 0.920 0.927 0.931
Fω
β ↑ 0.912 0.911 0.911 0.916 0.910 0.915 0.910 0.915 0.931

Sm ↑ 0.924 0.925 0.925 0.914 0.923 0.924 0.932 0.925 0.941
Em ↑ 0.946 0.932 0.953 0.954 0.942 0.951 0.957 0.949 0.959

IOU ↑ 0.879 0.879 0.879 0.871 0.876 0.880 0.893 0.881 0.909
Dice ↑ 0.921 0.919 0.922 0.922 0.919 0.923 0.922 0.924 0.940
BER ↓ 0.045 0.044 0.043 0.048 0.047 0.045 0.036 0.044 0.031

M ↓ 0.033 0.035 0.034 0.033 0.036 0.034 0.033 0.032 0.026

H
K
U
-I
S
[1
0
0
]

PA ↑ 0.973 0.972 0.974 0.973 0.974 0.974 0.976 0.974 0.977
Fmax
β ↑ 0.937 0.933 0.935 0.928 0.937 0.940 0.942 0.941 0.948

Fmean
β ↑ 0.910 0.898 0.908 0.914 0.915 0.915 0.901 0.918 0.920
Fω
β ↑ 0.900 0.893 0.899 0.904 0.902 0.905 0.898 0.908 0.916

Sm ↑ 0.916 0.916 0.919 0.908 0.918 0.920 0.928 0.920 0.931
Em ↑ 0.959 0.953 0.961 0.960 0.960 0.962 0.961 0.962 0.965

IOU ↑ 0.862 0.857 0.862 0.853 0.863 0.867 0.877 0.869 0.886
Dice ↑ 0.911 0.904 0.910 0.912 0.911 0.915 0.911 0.917 0.925
BER ↓ 0.045 0.048 0.047 0.051 0.048 0.045 0.038 0.045 0.037

M ↓ 0.028 0.031 0.028 0.027 0.029 0.027 0.029 0.028 0.025
P
A
S
C
A
L
-S

[1
0
5
] PA ↑ 0.938 0.937 0.936 0.937 0.932 0.939 0.943 0.938 0.947

Fmax
β ↑ 0.882 0.882 0.880 0.874 0.886 0.887 0.890 0.889 0.900

Fmean
β ↑ 0.844 0.797 0.840 0.854 0.842 0.853 0.842 0.851 0.848
Fω
β ↑ 0.823 0.823 0.818 0.830 0.823 0.829 0.827 0.829 0.846

Sm ↑ 0.857 0.859 0.854 0.849 0.854 0.859 0.871 0.859 0.875
Em ↑ 0.892 0.866 0.897 0.902 0.881 0.903 0.905 0.898 0.902

IOU ↑ 0.780 0.782 0.773 0.775 0.773 0.783 0.801 0.783 0.808
Dice ↑ 0.848 0.849 0.843 0.850 0.844 0.852 0.858 0.853 0.870
BER ↓ 0.080 0.078 0.084 0.084 0.085 0.081 0.066 0.078 0.065

M ↓ 0.064 0.066 0.066 0.063 0.070 0.062 0.062 0.064 0.055

Top 3 5/50 5/50 6/50 15/50 18/50 28/50 30/50 37/50 49/50
Top 1 0/50 0/50 0/50 1/50 5/50 0/50 3/50 1/50 40/50

on the CVC-ClinicDB [5] in terms of all ten met-
rics.
• For fair comparison with other RGB-D SOD
methods, we show the performance of GateNet
with ResNet-50 and Res2Net-50 as backbone. In
Tab. 6, we can see that GateNet-Res-50 and
GateNet-Res2-50 achieve the top 1 performance of
43/80 and 32/80 while the TriTransNet [121] and
SPNet [280] only reach 11/80 and 10/70, respec-
tively. Further, the comparison of GateNet-Res-50
+ GateNet-Res2-50 and the TriTransNet + SPNet
is 62/80 vs. 19/80.
• Tab. 7 - Tab. 11 show performance compar-
isons with camouflaged, defcus blur, shadow,
transparent, glass, mirror and ORSI SOD
methods, respectively. Without too much claim,
our models achieve the best performance in terms
of all ten metrics across 16 out of 17 different
datasets.
•. Tab. 12 lists the model sizes, parameters,
FLOPs and speed of different methods with
superior performance in Tab. 4 - Tab. 11 in
detail. It can be seen that both two-stream and

https://github.com/Xiaoqi-Zhao-DLUT/GateNet-RGB-Saliency
https://github.com/Xiaoqi-Zhao-DLUT/GateNet-RGB-Saliency
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Table 5 Quantitative comparison of different polyp
segmentation methods. Top 3 and Top 1 scores are
highlighted in blue and red, respectively.

Metric

UNet UNet++ SFA PraNet SANet MSNet UACANet GateNet
[149] [285] [48] [42] [201] [270] [85] –

MICCAI TMI MICCAI MICCAI MICCAI MICCAI ACMMM –
2015 2019 2019 2020 2021 2021 2021 –

Res2-50 Res2-50 Res2-50 Res2-50 Res2-50 Res2-50 Res2-50 Res2-50

E
n
d
o
sc
en

e
[1
8
0
] PA ↑ 0.979 0.984 0.936 0.990 0.993 0.990 0.995 0.993

Fmax
β ↑ 0.805 0.817 0.558 0.905 0.881 0.899 0.889 0.924

Fmean
β ↑ 0.703 0.706 0.353 0.824 0.823 0.829 0.885 0.867
Fω
β ↑ 0.684 0.687 0.341 0.843 0.859 0.848 0.886 0.885

Sm ↑ 0.842 0.838 0.640 0.924 0.927 0.926 0.933 0.941
Em ↑ 0.867 0.884 0.604 0.938 0.948 0.942 0.976 0.961

IOU ↑ 0.639 0.636 0.332 0.804 0.829 0.808 0.840 0.843
Dice ↑ 0.717 0.714 0.465 0.873 0.891 0.869 0.906 0.903
BER ↓ 0.121 0.137 0.084 0.033 0.020 0.037 0.023 0.027

M ↓ 0.022 0.018 0.065 0.010 0.008 0.010 0.006 0.007

C
V
C
-C

o
lo
n
D
B

[1
6
7
] PA ↑ 0.942 0.938 0.907 0.965 0.958 0.959 0.966 0.968

Fmax
β ↑ 0.625 0.622 0.565 0.765 0.808 0.807 0.836 0.824

Fmean
β ↑ 0.569 0.560 0.407 0.718 0.731 0.759 0.798 0.767
Fω
β ↑ 0.498 0.467 0.379 0.699 0.726 0.736 0.772 0.752

Sm ↑ 0.711 0.691 0.634 0.820 0.836 0.836 0.846 0.846
Em ↑ 0.763 0.762 0.648 0.847 0.855 0.883 0.897 0.896

IOU ↑ 0.449 0.413 0.351 0.645 0.678 0.678 0.707 0.700
Dice ↑ 0.519 0.490 0.467 0.716 0.754 0.755 0.786 0.771
BER ↓ 0.242 0.258 0.183 0.141 0.106 0.118 0.105 0.107

M ↓ 0.061 0.064 0.094 0.043 0.043 0.041 0.034 0.033

C
V
C
-C

li
n
ic
D
B

[5
] PA ↑ 0.982 0.979 0.960 0.991 0.989 0.993 0.992 0.994

Fmax
β ↑ 0.880 0.858 0.776 0.927 0.924 0.940 0.926 0.958

Fmean
β ↑ 0.804 0.784 0.655 0.885 0.883 0.894 0.919 0.920
Fω
β ↑ 0.811 0.785 0.647 0.896 0.909 0.913 0.917 0.937

Sm ↑ 0.889 0.872 0.793 0.935 0.935 0.942 0.938 0.953
Em ↑ 0.917 0.898 0.816 0.958 0.963 0.971 0.968 0.982

IOU ↑ 0.767 0.741 0.615 0.858 0.867 0.880 0.873 0.902
Dice ↑ 0.824 0.797 0.698 0.902 0.918 0.921 0.919 0.943
BER ↓ 0.085 0.105 0.108 0.047 0.031 0.034 0.032 0.024

M ↓ 0.019 0.022 0.042 0.009 0.012 0.008 0.008 0.006

E
T
IS

[1
5
7
]

PA ↑ 0.968 0.971 0.892 0.983 0.986 0.982 0.977 0.988
Fmax
β ↑ 0.497 0.554 0.367 0.675 0.748 0.764 0.686 0.772

Fmean
β ↑ 0.394 0.465 0.255 0.602 0.656 0.653 0.668 0.697
Fω
β ↑ 0.366 0.390 0.231 0.600 0.685 0.677 0.650 0.702

Sm ↑ 0.682 0.681 0.557 0.791 0.843 0.840 0.812 0.842
Em ↑ 0.645 0.704 0.515 0.792 0.835 0.828 0.851 0.880

IOU ↑ 0.343 0.342 0.219 0.576 0.670 0.666 0.618 0.669
Dice ↑ 0.406 0.413 0.297 0.630 0.751 0.719 0.696 0.735
BER ↓ 0.273 0.308 0.232 0.169 0.059 0.108 0.094 0.111

M ↓ 0.036 0.035 0.109 0.031 0.015 0.020 0.023 0.012

K
va
si
r
[7
2
]

PA ↑ 0.947 0.954 0.926 0.971 0.972 0.974 0.974 0.976
Fmax
β ↑ 0.876 0.904 0.801 0.929 0.931 0.938 0.922 0.937

Fmean
β ↑ 0.832 0.853 0.715 0.897 0.903 0.902 0.914 0.916
Fω
β ↑ 0.794 0.808 0.670 0.885 0.892 0.892 0.897 0.903

Sm ↑ 0.858 0.862 0.782 0.915 0.914 0.923 0.914 0.921
Em ↑ 0.901 0.907 0.828 0.943 0.950 0.944 0.951 0.958

IOU ↑ 0.756 0.753 0.619 0.848 0.853 0.862 0.855 0.864
Dice ↑ 0.821 0.824 0.725 0.901 0.907 0.907 0.908 0.912
BER ↓ 0.087 0.100 0.113 0.052 0.050 0.049 0.050 0.052

M ↓ 0.055 0.048 0.075 0.030 0.028 0.028 0.026 0.024

Top 3 0/50 0/50 0/50 9/50 31/50 34/50 39/50 49/50
Top 1 0/50 0/50 0/50 0/50 4/50 3/50 13/50 30/50

single stream GateNets still have obvious advan-
tages against most state-of-the-art methods with
different backbones.

4.5 Ablation Studies

To reflect the general contribution of each com-
ponent to the overall performance, we conduct
ablation studies on the largest dataset for each
sub-task individually. Tab. 13 and Tab. 14 are the
results for single-input tasks and the two-input
task (RGB-D SOD), respectively. Tab. 15 verifies
the effect of folded atrous convolution thoroughly.
• Dual Branch Decoder. The baseline (M1) is a
FPN structure with a progressive decoder. We add
the residual parallel branch to construct the dual
branch decoder. We can see that M2 consistently
outperforms M1 across all datasets in terms of all
ten metrics. Meanwhile, M2 has been able to sur-
pass SINet [41], PFNet [130], IS2CNet [256] and
BDRAR [289]. Based on this strong dual branch
network, the subsequent performance gain of gate
units and fold atrous convolution is more convinc-
ing.
• Gate Units. We embed multi-level gate units
in both the FPN and parallel branches. In Tab. 13,

Table 6 Quantitative comparison of different RGB-D
SOD methods. Top 3 and Top 1 scores are highlighted in
blue and red, respectively.

Metric

DCF RD3D UTA DSNet SPNet TriTrans GateNet GateNet
[74] [15] [272] [204] [280] [121]

CVPR AAAI TIP TIP ICCV ACMMM – –
2021 2021 2021 2021 2021 2021 – –
Res-50 Res-50 Res-50 Res-50 Res2-50 Res-50 Res-50 Res2-50

D
U
T
L
F
-D

[1
4
3
]

PA ↑ - 0.973 - - - 0.975 0.977 0.977
Fmax
β ↑ - 0.946 - - - 0.951 0.958 0.957

Fmean
β ↑ - 0.924 - - - 0.938 0.946 0.944

Fω
β ↑ - 0.909 - - - 0.926 0.931 0.931

Sm ↑ - 0.931 - - - 0.932 0.943 0.943
Em ↑ - 0.957 - - - 0.966 0.969 0.967

IOU ↑ - 0.888 - - - 0.893 0.909 0.909
Dice ↑ - 0.922 - - - 0.937 0.940 0.940
BER ↓ - 0.039 - - - 0.036 0.033 0.032

M ↓ - 0.031 - - - 0.025 0.025 0.025

N
J
U
D

[8
0
]

PA ↑ 0.963 0.966 0.963 0.969 0.973 0.970 0.975 0.974
Fmax
β ↑ 0.917 0.923 0.915 0.930 0.935 0.934 0.943 0.936

Fmean
β ↑ 0.897 0.901 0.903 0.907 0.917 0.920 0.928 0.920

Fω
β ↑ 0.878 0.886 0.883 0.893 0.906 0.906 0.913 0.908

Sm ↑ 0.903 0.916 0.902 0.921 0.924 0.920 0.931 0.930
Em ↑ 0.941 0.942 0.946 0.947 0.953 0.954 0.956 0.953

IOU ↑ 0.841 0.862 0.847 0.870 0.879 0.871 0.888 0.885
Dice ↑ 0.895 0.903 0.901 0.909 0.921 0.920 0.924 0.922
BER ↓ 0.058 0.047 0.056 0.047 0.040 0.042 0.041 0.040

M ↓ 0.038 0.037 0.037 0.034 0.029 0.030 0.028 0.028

N
L
P
R

[1
4
1
]

PA ↑ 0.978 0.980 0.980 0.978 0.980 0.980 0.978 0.981
Fmax
β ↑ 0.917 0.927 0.932 0.928 0.926 0.929 0.936 0.937

Fmean
β ↑ 0.892 0.892 0.918 0.886 0.904 0.910 0.911 0.911

Fω
β ↑ 0.886 0.889 0.905 0.881 0.896 0.902 0.902 0.906

Sm ↑ 0.921 0.929 0.928 0.926 0.927 0.928 0.933 0.938
Em ↑ 0.956 0.959 0.965 0.957 0.959 0.964 0.962 0.966

IOU ↑ 0.849 0.862 0.866 0.855 0.861 0.864 0.873 0.878
Dice ↑ 0.901 0.906 0.918 0.900 0.913 0.917 0.915 0.921
BER ↓ 0.047 0.041 0.042 0.043 0.037 0.038 0.040 0.037

M ↓ 0.023 0.022 0.020 0.024 0.021 0.020 0.023 0.020

S
T
E
R
E

[1
3
3
]

PA ↑ 0.965 0.965 0.968 0.967 0.965 0.967 0.970 0.970
Fmax
β ↑ 0.915 0.917 0.921 0.924 0.915 0.919 0.929 0.929

Fmean
β ↑ 0.890 0.886 0.905 0.894 0.888 0.893 0.907 0.903

Fω
β ↑ 0.873 0.871 0.887 0.876 0.873 0.882 0.889 0.888

Sm ↑ 0.905 0.911 0.910 0.915 0.907 0.908 0.921 0.919
Em ↑ 0.943 0.944 0.949 0.947 0.942 0.950 0.952 0.950

IOU ↑ 0.837 0.848 0.853 0.851 0.841 0.848 0.862 0.861
Dice ↑ 0.896 0.898 0.909 0.899 0.899 0.907 0.909 0.909
BER ↓ 0.051 0.044 0.046 0.048 0.046 0.041 0.043 0.042

M ↓ 0.037 0.037 0.033 0.036 0.037 0.033 0.032 0.033

S
IP

[4
3
]

PA ↑ 0.950 0.954 0.952 0.951 0.958 0.957 0.963 0.958
Fmax
β ↑ 0.900 0.906 0.896 0.902 0.916 0.916 0.927 0.921

Fmean
β ↑ 0.877 0.874 0.872 0.865 0.893 0.892 0.902 0.898

Fω
β ↑ 0.841 0.845 0.843 0.832 0.868 0.864 0.877 0.868

Sm ↑ 0.873 0.885 0.873 0.876 0.894 0.886 0.903 0.894
Em ↑ 0.921 0.924 0.927 0.920 0.931 0.929 0.939 0.931

IOU ↑ 0.786 0.808 0.797 0.793 0.824 0.815 0.840 0.822
Dice ↑ 0.859 0.869 0.870 0.856 0.886 0.880 0.894 0.881
BER ↓ 0.085 0.068 0.072 0.078 0.063 0.070 0.058 0.070

M ↓ 0.052 0.048 0.048 0.052 0.043 0.043 0.038 0.044

R
G
B
D
1
3
5
[2
5
]

PA ↑ 0.978 0.982 0.975 0.980 0.986 0.986 0.985 0.985
Fmax
β ↑ 0.926 0.941 0.921 0.939 0.950 0.946 0.951 0.950

Fmean
β ↑ 0.901 0.917 0.891 0.910 0.935 0.936 0.931 0.931

Fω
β ↑ 0.876 0.904 0.864 0.893 0.931 0.929 0.922 0.922

Sm ↑ 0.916 0.935 0.901 0.928 0.945 0.943 0.941 0.941
Em ↑ 0.958 0.975 0.935 0.970 0.983 0.981 0.978 0.980

IOU ↑ 0.823 0.860 0.808 0.846 0.888 0.884 0.878 0.876
Dice ↑ 0.887 0.912 0.874 0.902 0.938 0.935 0.928 0.928
BER ↓ 0.065 0.050 0.071 0.058 0.033 0.035 0.041 0.042

M ↓ 0.023 0.019 0.026 0.021 0.014 0.014 0.016 0.016

S
S
D

[2
8
7
]

PA ↑ 0.948 0.924 0.952 0.959 0.957 0.960 0.957 0.959
Fmax
β ↑ 0.857 0.805 0.860 0.895 0.883 0.889 0.876 0.891

Fmean
β ↑ 0.828 0.749 0.838 0.853 0.855 0.865 0.853 0.859

Fω
β ↑ 0.790 0.707 0.799 0.829 0.823 0.842 0.824 0.834

Sm ↑ 0.852 0.803 0.852 0.885 0.871 0.881 0.881 0.883
Em ↑ 0.906 0.869 0.901 0.923 0.920 0.935 0.923 0.923

IOU ↑ 0.746 0.674 0.749 0.801 0.783 0.802 0.796 0.804
Dice ↑ 0.813 0.737 0.822 0.852 0.852 0.862 0.849 0.861
BER ↓ 0.102 0.143 0.101 0.076 0.075 0.075 0.074 0.068

M ↓ 0.053 0.082 0.049 0.045 0.044 0.041 0.044 0.043

L
F
S
D

[1
0
3
]

PA ↑ 0.931 0.929 0.911 0.935 0.931 0.935 0.945 0.943
Fmax
β ↑ 0.878 0.879 0.856 0.884 0.881 0.890 0.891 0.904

Fmean
β ↑ 0.857 0.855 0.832 0.864 0.860 0.869 0.878 0.883

Fω
β ↑ 0.824 0.816 0.797 0.823 0.823 0.840 0.841 0.849

Sm ↑ 0.856 0.858 0.830 0.868 0.854 0.866 0.879 0.881
Em ↑ 0.903 0.898 0.878 0.905 0.897 0.908 0.917 0.913

IOU ↑ 0.777 0.779 0.748 0.790 0.766 0.797 0.804 0.806
Dice ↑ 0.849 0.849 0.832 0.854 0.847 0.865 0.865 0.871
BER ↓ 0.081 0.074 0.090 0.069 0.083 0.072 0.067 0.068

M ↓ 0.071 0.073 0.089 0.069 0.071 0.066 0.058 0.059

Top 3 1/70 7/80 16/70 17/70 39/70 61/80 71/80 77/80
Top 1 0/80 0/80 2/70 2/70 10/70 11/80 43/80 32/80

the M3 achieves a significant improvement com-
pared to the M4 indicates the necessity of design-
ing gate units-v2 with a global information per-
spective. Further, the performance gap between
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Table 7 Quantitative comparison of different camouflaged object methods. The best scores are highlighted in red.

Dataset Method Pub. Backbone PA ↑ Fmax
β ↑ Fmean

β ↑ Fω
β ↑ Sm ↑ Em ↑ IOU ↑ Dice ↑ BER ↓ M ↓

CAMO [88]

SINet [41] CVPR 2020 ResNet-50 0.907 0.762 0.709 0.606 0.751 0.835 0.546 0.639 0.201 0.100

PFNet [130] CVPR 2021 ResNet-50 0.917 0.795 0.751 0.695 0.782 0.855 0.624 0.725 0.150 0.085

RankNet [125] CVPR 2021 ResNet-50 0.922 0.791 0.756 0.696 0.787 0.859 0.626 0.722 0.154 0.080

MGL [233] CVPR 2021 ResNet-50 0.914 0.792 0.738 0.673 0.775 0.848 0.605 0.699 0.172 0.088

UGTR [225] ICCV 2021 ResNet-50 0.918 0.800 0.748 0.684 0.784 0.858 0.618 0.712 0.161 0.086

GateNet – ResNet-50 0.934 0.835 0.804 0.756 0.829 0.888 0.694 0.781 0.122 0.069

CHAMELEON [160]

SINet [41] CVPR 2020 ResNet-50 0.965 0.846 0.776 0.740 0.869 0.899 0.726 0.776 0.107 0.044

PFNet [130] CVPR 2021 ResNet-50 0.970 0.860 0.820 0.810 0.882 0.942 0.769 0.835 0.077 0.033

RankNet [125] CVPR 2021 ResNet-50 0.972 0.866 0.835 0.822 0.890 0.936 0.776 0.844 0.077 0.031

MGL [233] CVPR 2021 ResNet-50 0.973 0.868 0.826 0.813 0.893 0.923 0.781 0.832 0.082 0.030

UGTR [225] ICCV 2021 ResNet-50 0.974 0.863 0.805 0.794 0.887 0.921 0.761 0.816 0.093 0.031

GateNet – ResNet-50 0.977 0.902 0.858 0.855 0.910 0.951 0.821 0.872 0.060 0.026

COD10K [41]

SINet [41] CVPR 2020 ResNet-50 0.957 0.708 0.593 0.551 0.770 0.797 0.532 0.602 0.191 0.051

PFNet [130] CVPR 2021 ResNet-50 0.962 0.748 0.676 0.660 0.798 0.868 0.602 0.700 0.136 0.040

RankNet [125] CVPR 2021 ResNet-50 0.965 0.756 0.699 0.673 0.802 0.883 0.609 0.705 0.144 0.037

MGL [233] CVPR 2021 ResNet-50 0.968 0.770 0.681 0.666 0.811 0.865 0.617 0.695 0.154 0.035

UGTR [225] ICCV 2021 ResNet-50 0.968 0.772 0.671 0.666 0.815 0.850 0.620 0.697 0.150 0.036

GateNet – ResNet-50 0.974 0.823 0.752 0.742 0.846 0.901 0.689 0.768 0.114 0.028

NC4K [125]

SINet [41] CVPR 2020 ResNet-50 0.943 0.805 0.768 0.723 0.807 0.883 0.646 0.745 0.141 0.058

PFNet [130] CVPR 2021 ResNet-50 0.949 0.821 0.779 0.745 0.828 0.894 0.683 0.773 0.117 0.053

RankNet [125] CVPR 2021 ResNet-50 0.954 0.836 0.802 0.766 0.839 0.904 0.700 0.785 0.118 0.048

MGL [233] CVPR 2021 ResNet-50 0.951 0.830 0.778 0.740 0.832 0.890 0.682 0.761 0.129 0.053

UGTR [225] ICCV 2021 ResNet-50 0.952 0.833 0.778 0.747 0.839 0.888 0.694 0.770 0.120 0.052

GateNet – ResNet-50 0.963 0.872 0.832 0.806 0.869 0.918 0.751 0.824 0.094 0.040

Table 8 Quantitative comparison of different defocus blur detction methods. The best scores are highlighted in red.

Dataset Method Pub. Backbone PA ↑ Fmax
β ↑ Fmean

β ↑ Fω
β ↑ Sm ↑ Em ↑ IOU ↑ Dice ↑ BER ↓ M ↓

CUHK [156]

CENet [268] CVPR 2019 VGG-16 0.942 0.914 0.873 0.867 0.873 0.894 0.804 0.877 0.081 0.060

Depth-Distill [31] ECCV 2020 VGG-16 0.955 0.924 0.848 0.881 0.891 0.898 0.845 0.904 0.052 0.049

SG [264] CVPR 2021 VGG-16 0.881 0.820 0.641 0.737 0.762 0.749 0.673 0.788 0.123 0.123

IS2CNet [256] TCSVT 2021 VGG-16 0.939 0.917 0.899 0.862 0.863 0.909 0.799 0.872 0.085 0.063

DENets [263] TIP 2021 VGG-16 0.953 0.931 0.881 0.882 0.887 0.909 0.837 0.890 0.068 0.055

GateNet – VGG-16 0.963 0.935 0.920 0.903 0.906 0.941 0.869 0.919 0.046 0.040

DUT [267]

CENet [268] CVPR 2019 VGG-16 0.867 0.826 0.767 0.697 0.742 0.775 0.609 0.703 0.185 0.136

Depth-Distill [31] ECCV 2020 VGG-16 0.890 0.860 0.813 0.766 0.787 0.828 0.677 0.780 0.143 0.113

SG [264] CVPR 2021 VGG-16 0.827 0.749 0.629 0.612 0.663 0.718 0.522 0.650 0.210 0.175

IS2CNet [256] TCSVT 2021 VGG-16 0.865 0.827 0.784 0.699 0.731 0.788 0.601 0.710 0.188 0.136

DENets [263] TIP 2021 VGG-16 0.910 0.876 0.807 0.799 0.814 0.837 0.735 0.814 0.115 0.096

GateNet – VGG-16 0.939 0.905 0.887 0.861 0.862 0.908 0.816 0.882 0.072 0.064

Table 9 Quantitative comparison of different shadow detection methods. The best scores are highlighted in red.

Dataset Method Pub. Backbone PA ↑ Fmax
β ↑ Fmean

β ↑ Fω
β ↑ Sm ↑ Em ↑ IOU ↑ Dice ↑ BER ↓ M ↓

SBU [182]

DSC [67] CVPR 2018 VGG-16 0.969 0.914 0.892 0.861 0.856 0.939 0.801 0.871 0.081 0.032

ADNet [87] ECCV 2018 – 0.951 0.877 0.696 0.424 0.700 0.811 0.747 0.539 0.074 0.201

BDRAR [289] ECCV 2018 ResNeXt-101 0.961 0.884 0.830 0.827 0.844 0.930 0.784 0.863 0.052 0.039

DSD [275] CVPR 2019 ResNeXt-101 0.965 0.896 0.841 0.835 0.851 0.933 0.797 0.873 0.046 0.036

GateNet – ResNeXt-101 0.978 0.937 0.903 0.889 0.886 0.957 0.848 0.899 0.059 0.025

UCF [288]

DSC [67] CVPR 2018 VGG-16 0.947 0.806 0.772 0.737 0.788 0.897 0.675 0.770 0.121 0.054

ADNet [87] ECCV 2018 – 0.916 0.783 0.575 0.371 0.647 0.748 0.611 0.483 0.110 0.229

BDRAR [289] ECCV 2018 ResNeXt-101 0.927 0.819 0.613 0.644 0.763 0.765 0.630 0.723 0.079 0.080

DSD [275] CVPR 2019 ResNeXt-101 0.938 0.791 0.726 0.710 0.779 0.862 0.667 0.775 0.079 0.063

GateNet – ResNeXt-101 0.954 0.865 0.800 0.777 0.821 0.907 0.723 0.812 0.093 0.048

ISTD [186]

BDRAR [289] ECCV 2018 ResNeXt-101 0.973 0.910 0.880 0.878 0.901 0.946 0.856 0.906 0.026 0.027

DSD [275] CVPR 2019 ResNeXt-101 0.980 0.933 0.919 0.897 0.930 0.961 0.883 0.912 0.040 0.023

GateNet – ResNeXt-101 0.989 0.965 0.932 0.938 0.956 0.972 0.931 0.951 0.012 0.012

Table 10 Quantitative comparison of different transparent, glass and mirror detection methods. The best scores are
highlighted in red.

Dataset Method Pub. Backbone PA ↑ Fmax
β ↑ Fmean

β ↑ Fω
β ↑ Sm ↑ Em ↑ IOU ↑ Dice ↑ BER ↓ M ↓

Transparent Object Detection

Transparent-Easy [217]
Translab [217] ECCV 2020 ResNet-50 0.978 0.955 0.953 0.941 0.935 0.974 0.921 0.957 0.027 0.022

GateNet – ResNet-50 0.989 0.980 0.979 0.974 0.963 0.988 0.962 0.980 0.014 0.011

Transparent-Hard [217]
Translab [217] ECCV 2020 ResNet-50 0.913 0.843 0.827 0.783 0.798 0.871 0.733 0.827 0.110 0.087

GateNet – ResNet-50 0.947 0.913 0.904 0.874 0.871 0.923 0.838 0.899 0.069 0.053

Transparent-All [217]
Translab [217] ECCV 2020 ResNet-50 0.964 0.931 0.927 0.907 0.906 0.952 0.881 0.929 0.044 0.036

GateNet – ResNet-50 0.980 0.966 0.963 0.953 0.944 0.974 0.936 0.963 0.025 0.020

Glass Detection

GDD [131]

GDNet [131] CVPR 2020 ResNeXt-101 0.939 0.927 0.920 0.901 0.864 0.919 0.876 0.924 0.056 0.061

EBLNet [58] ICCV 2021 ResNeXt-101 0.944 0.937 0.929 0.908 0.875 0.925 0.882 0.928 0.054 0.056

GateNet – ResNeXt-101 0.951 0.944 0.937 0.921 0.892 0.933 0.898 0.935 0.049 0.049

Mirror Detection

MSD [229]
MirrorNet [? ] ICCV 2019 ResNeXt-101 0.934 0.857 0.777 0.744 0.846 0.861 0.785 0.806 0.065 0.085

GateNet – ResNeXt-101 0.949 0.865 0.839 0.829 0.872 0.907 0.811 0.849 0.077 0.053
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Table 11 Quantitative comparison of different ORSI SOD methods. The best scores are highlighted in red.

Dataset Method Pub. Backbone PA ↑ Fmax
β ↑ Fmean

β ↑ Fω
β ↑ Sm ↑ Em ↑ IOU ↑ Dice ↑ BER ↓ M ↓

ORSSD [93]
DAFNet [249] TIP 2020 VGG-16 0.990 0.903 0.788 0.844 0.912 0.920 0.823 0.874 0.059 0.011
MJRBM [178] TGRS 2021 VGG-16 0.986 0.893 0.802 0.844 0.910 0.934 0.817 0.853 0.066 0.016

GateNet – VGG-16 0.990 0.914 0.847 0.875 0.925 0.959 0.839 0.885 0.048 0.011

EORSSD [249]

DAFNet [249] TIP 2020 VGG-16 0.996 0.867 0.642 0.783 0.883 0.815 0.800 0.830 0.051 0.006
MJRBM [178] TGRS 2021 VGG-16 0.992 0.877 0.707 0.813 0.879 0.890 0.793 0.822 0.070 0.010

RRNet [29] TGRS 2021 Res2Net-50 0.994 0.887 0.725 0.827 0.885 0.873 0.834 0.862 0.067 0.008
GateNet – VGG-16 0.993 0.896 0.799 0.859 0.894 0.915 0.850 0.892 0.057 0.008

ORSI-4199 [178]
MJRBM [178] TGRS 2021 VGG-16 0.965 0.867 0.800 0.806 0.853 0.909 0.747 0.813 0.103 0.037

GateNet – VGG-16 0.969 0.883 0.853 0.840 0.864 0.935 0.767 0.839 0.095 0.032

Table 12 Efficiency comparisons of the top-performing methods in Tab. 4 - Tab. 11. The best and worst results are
shown in red and blue, respectively.

Model Nmae TriTrans† SPNet† GateNet† EBLNet GDNet MirrorNet DSDNet GateNet UACANet GateNet UGTR MGL Translab CTDNet GateNet MJRBM GateNet
[121] [280] [58] [131] [229] [275] [85] [225] [233] [217] [273] [178]

Backbone Res-50 Res2-50 Res-50 ResX-101 ResX-101 ResX-101 ResX-101 ResX-101 Res2-50 Res2-50 Res-50 Res-50 Res-50 Res-50 Res-50 VGG-16 VGG-16

Model Size (MB)↓ 559 702 254 845 770 465 414 373 278 211 296 435 162 94 119 175 78
Parameters (MB)↓ 139.55 175.29 81.55 111.45 201.72 121.77 58.16 92.89 69.16 52.51 48.87 63.60 42.20 21.93 29.68 43.78 20.43

FLOPs (G)↓ 680.07 135.86 63.30 674.41 244.21 111.92 54.34 94.18 119.60 74.16 358.53 475.40 284.68 21.43 64.24 191.46 131.01
Speed (FPS)↑ 16 22 35 16 23 25 49 38 34 35 24 18 22 133 55 35 36

Table 13 Ablation experiments for seven binary
segmentation tasks. M1: FPN Baseline. M2: + Residual
Parallel Branch. M3: + Gate Units v1. M4: + Gate Units
v2. M5: + Fold-ASPP.

Dataset Method PA ↑ Fmax
β ↑ Fmean

β ↑ Fω
β ↑ Sm ↑ Em ↑ IOU ↑ Dice ↑ BER ↓ M ↓ ∆ gains

DUTS [188]

M1 0.958 0.870 0.801 0.800 0.870 0.888 0.763 0.820 0.102 0.045

M2 0.962 0.875 0.810 0.808 0.875 0.894 0.775 0.830 0.095 0.043 ↑1.85%
M3 0.967 0.888 0.835 0.830 0.885 0.906 0.795 0.844 0.082 0.038 ↑5.70%
M4 0.970 0.895 0.842 0.836 0.892 0.914 0.807 0.856 0.071 0.035 ↑8.20%
M5 0.972 0.911 0.857 0.864 0.906 0.931 0.828 0.878 0.052 0.030 ↑12.91%

Kvasir [72]

M1 0.965 0.910 0.854 0.820 0.860 0.900 0.770 0.820 0.107 0.053

M2 0.968 0.914 0.865 0.850 0.872 0.915 0.791 0.845 0.101 0.045 ↑3.52%
M3 0.969 0.925 0.887 0.874 0.890 0.932 0.820 0.875 0.089 0.034 ↑8.54%
M4 0.968 0.929 0.897 0.889 0.902 0.940 0.832 0.894 0.078 0.031 ↑11.09%
M5 0.976 0.937 0.916 0.903 0.921 0.958 0.864 0.912 0.052 0.024 ↑16.37%

COD10K [41]

M1 0.965 0.781 0.685 0.668 0.807 0.840 0.605 0.685 0.167 0.042

M2 0.970 0.790 0.699 0.685 0.812 0.855 0.623 0.710 0.160 0.039 ↑2.66%
M3 0.972 0.805 0.722 0.708 0.823 0.874 0.648 0.736 0.141 0.037 ↑6.32%
M4 0.972 0.810 0.730 0.717 0.830 0.881 0.660 0.751 0.130 0.033 ↑8.84%
M5 0.974 0.823 0.752 0.742 0.846 0.901 0.689 0.768 0.114 0.028 ↑12.99%

DUT [267]

M1 0.905 0.860 0.800 0.792 0.784 0.808 0.686 0.776 0.157 0.116

M2 0.911 0.868 0.818 0.808 0.801 0.824 0.714 0.794 0.143 0.100 ↑3.91%
M3 0.925 0.882 0.848 0.829 0.828 0.856 0.750 0.830 0.119 0.087 ↑9.25%
M4 0.930 0.890 0.860 0.838 0.838 0.871 0.775 0.848 0.102 0.079 ↑12.34%
M5 0.939 0.905 0.887 0.861 0.862 0.908 0.816 0.882 0.072 0.064 ↑18.29%

SBU [182]

M1 0.961 0.880 0.836 0.820 0.840 0.920 0.774 0.857 0.098 0.041

M2 0.964 0.892 0.852 0.841 0.857 0.928 0.791 0.865 0.092 0.038 ↑2.56%
M3 0.969 0.908 0.870 0.861 0.868 0.938 0.810 0.879 0.078 0.033 ↑6.55%
M4 0.972 0.917 0.881 0.870 0.872 0.944 0.822 0.885 0.072 0.030 ↑8.61%
M5 0.978 0.937 0.903 0.889 0.886 0.957 0.848 0.899 0.059 0.025 ↑12.86%

GDD [131]

M1 0.930 0.915 0.900 0.887 0.845 0.900 0.852 0.905 0.061 0.068

M2 0.933 0.920 0.909 0.891 0.855 0.906 0.861 0.910 0.060 0.065 ↑1.18%
M3 0.939 0.930 0.919 0.904 0.870 0.915 0.874 0.921 0.055 0.058 ↑4.02%
M4 0.943 0.934 0.924 0.910 0.878 0.920 0.881 0.924 0.052 0.055 ↑5.42%
M5 0.951 0.944 0.937 0.921 0.892 0.933 0.898 0.935 0.049 0.049 ↑7.89%

ORSI-4199 [178]

M1 0.960 0.820 0.792 0.800 0.831 0.878 0.727 0.780 0.122 0.045

M2 0.961 0.832 0.812 0.808 0.836 0.890 0.730 0.785 0.120 0.043 ↑1.42%
M3 0.965 0.855 0.827 0.826 0.847 0.912 0.746 0.808 0.112 0.038 ↑4.82%
M4 0.967 0.865 0.835 0.830 0.852 0.921 0.752 0.814 0.106 0.036 ↑6.37%
M5 0.969 0.883 0.853 0.840 0.864 0.935 0.767 0.839 0.095 0.032 ↑9.48%

M2 and M4 shows that the dual branch gated
network obtains a considerable performance gain.
In Tab. 14, M3 vs. M2 and M4 vs. M3 demon-
strate the effectiveness of gate units in cross-modal
fusion and encoder-decoder feature transition,
respectively. In addition, the curves of gate value
on each dataset in ten tasks as shown in Fig. 8.
From these gated patterns, we reveal some insight-
ful findings: I) For the distribution of gate values
at all levels in the FPN branch, Fig. 8(a), (b), (e),
(f), (g) present G1 and G2 are smaller than G3,
G4, G5, while G1 in Fig. 8(c), (d), (h) has the
opposite trend. Analyzed from the visual percep-
tion, camouflaged objects, orsi object and polyps
are easy to be confused with the background. The

Table 14 Ablation experiments for RGB-D salient
object detection. M1: FPN Baseline. M2: + Residual
Parallel Branch. M3: + Cross-modal Gate Units. M4: +
Encoder-Decoder Gate Units. M5: + Fold-ASPP.

Dataset Method PA ↑ Fmax
β ↑ Fmean

β ↑ Fω
β ↑ Sm ↑ Em ↑ IOU ↑ Dice ↑ BER ↓ M ↓ ∆ gains

STERE [133]

M1 0.944 0.882 0.853 0.802 0.860 0.874 0.817 0.833 0.057 0.048

M2 0.949 0.888 0.871 0.825 0.870 0.890 0.825 0.845 0.054 0.045 ↑2.31%
M3 0.958 0.905 0.885 0.847 0.892 0.914 0.838 0.867 0.050 0.041 ↑5.53%
M4 0.968 0.920 0.897 0.869 0.910 0.934 0.850 0.888 0.046 0.036 ↑8.80%
M5 0.970 0.929 0.907 0.889 0.921 0.952 0.862 0.909 0.043 0.03 ↑11.42%

SIP [43]

M1 0.952 0.877 0.850 0.801 0.850 0.860 0.774 0.816 0.110 0.078

M2 0.955 0.885 0.861 0.817 0.862 0.874 0.795 0.830 0.097 0.070 ↑3.41%
M3 0.957 0.898 0.874 0.840 0.877 0.896 0.812 0.855 0.084 0.056 ↑7.95%
M4 0.960 0.915 0.890 0.862 0.894 0.922 0.827 0.879 0.070 0.04 ↑12.18%
M5 0.963 0.927 0.902 0.877 0.903 0.939 0.840 0.894 0.058 0.03 ↑15.39%

NJUD [80]

M1 0.953 0.874 0.830 0.825 0.861 0.870 0.802 0.840 0.072 0.059

M2 0.957 0.886 0.845 0.840 0.876 0.886 0.820 0.860 0.067 0.055 ↑2.73%
M3 0.964 0.905 0.874 0.870 0.898 0.914 0.846 0.882 0.057 0.046 ↑7.82%
M4 0.970 0.926 0.906 0.897 0.919 0.936 0.871 0.913 0.048 0.036 ↑12.96%
M5 0.975 0.943 0.928 0.913 0.931 0.956 0.888 0.924 0.041 0.028 ↑16.80%

NLPR [141]

M1 0.952 0.882 0.826 0.810 0.867 0.875 0.800 0.862 0.068 0.042

M2 0.956 0.893 0.840 0.826 0.880 0.890 0.818 0.870 0.062 0.038 ↑3.01%
M3 0.966 0.903 0.868 0.847 0.896 0.921 0.840 0.885 0.055 0.032 ↑7.27%
M4 0.972 0.922 0.898 0.879 0.917 0.948 0.861 0.905 0.046 0.026 ↑12.10%
M5 0.978 0.936 0.911 0.902 0.933 0.962 0.873 0.915 0.040 0.020 ↑14.99%

boundary information is very important to dis-
tinguish the fore/background, which drives the
network to pay more attention on low-level fea-
tures. II) For the distribution of gate values at all
levels in the parallel branch, the greater contribu-
tion of G1 and G2 in Fig. 8(d), (h) compared to
the other tasks further illustrates the importance
of details information in camouflaged and polyp
segmentation tasks. III) As shown in Fig. 8(e),
G4 and G5 have high values in both FPN branch
and parallel branch, indicating that the accurate
localization of focused regions is extremely crucial
for defocus blur detection and motivate the net-
work to consistently maintain a high pass-through
pattern for high-level features. IV) Compared
to other gate values in the FPN branch, G4 is
the largest one and even exceeds 0.9 for almost
all tasks. This phenomenon is also in line with
our general understanding for deep networks, i.e.,
level-4 features effectively can construct the main
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Fig. 8 Distributions of gate weights separately presented in the FPN and parallel branch on 35 datasets of 10
tasks.

body of foreground because they not only con-
tain stable semantic information but also have
larger spatial resolution than level-5 features. V)
Distributions of gate weights can well depict the
similarities and differences among diverse binary
segmentation sub-tasks.

To show the effect of the gate units more intu-
itively, we visualize the features of different levels
in Fig. 9. It can be observed that even if the dog

has a very low contrast with the chair or the bill-
board (see the 1st ∼ 4th rows), through using
multi-level gate units, the high contrast between
the object region and the background is always
maintained at each layer while the detailed infor-
mation is continually regained, thereby making
salient objects be effectively distinguished. And,
the gate units can avoid excessive suppression of
the slender parts of objects (see the 5th ∼ 8th

rows). The corners of the poster, the limbs and
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Table 15 Evaluation of the folded atrous convolution.
(x) stands for different sampling rates of atrous
convolution. D-ASPP is DenseASPP [228].

Metric Atrous Atrous Atrous Fold Fold Fold ASPP Fold- D-ASPP Fold-
r=2 r=4 r=6 r=2 r=4 r=6 ASPP D-ASPP

D
U
T
S
[1
8
8
]

PA ↑ 0.970 0.970 0.971 0.971 0.971 0.971 0.972 0.972 0.971 0.971
Fmax
β ↑ 0.894 0.895 0.898 0.898 0.902 0.906 0.903 0.911 0.902 0.909

Fmean
β ↑ 0.843 0.845 0.848 0.847 0.851 0.853 0.852 0.857 0.854 0.861

Fω
β ↑ 0.837 0.841 0.843 0.841 0.845 0.852 0.850 0.864 0.844 0.858

Sm ↑ 0.891 0.894 0.896 0.896 0.899 0.901 0.901 0.906 0.898 0.902
Em ↑ 0.914 0.916 0.918 0.918 0.921 0.924 0.924 0.931 0.923 0.934

IOU ↑ 0.805 0.808 0.811 0.811 0.815 0.820 0.816 0.828 0.815 0.821
Dice ↑ 0.856 0.859 0.861 0.860 0.865 0.870 0.866 0.878 0.864 0.872
BER ↓ 0.073 0.069 0.064 0.067 0.062 0.056 0.057 0.052 0.060 0.057

M ↓ 0.035 0.035 0.034 0.034 0.034 0.033 0.033 0.030 0.034 0.031
∆ gains ↑0.76% ↑1.94% ↑1.48% ↑2.48% ↑3.91% ↑3.62% ↑6.03% ↑2.78% ↑4.73%

K
va
si
r
[7
2
]

PA ↑ 0.968 0.968 0.970 0.971 0.973 0.975 0.974 0.976 0.974 0.976
Fmax
β ↑ 0.929 0.930 0.932 0.932 0.933 0.935 0.935 0.937 0.935 0.941

Fmean
β ↑ 0.899 0.902 0.904 0.905 0.908 0.912 0.909 0.916 0.913 0.922

Fω
β ↑ 0.888 0.889 0.892 0.893 0.896 0.899 0.897 0.903 0.897 0.902

Sm ↑ 0.902 0.905 0.912 0.907 0.912 0.917 0.915 0.921 0.917 0.925
Em ↑ 0.941 0.943 0.945 0.945 0.949 0.953 0.952 0.958 0.949 0.953

IOU ↑ 0.827 0.831 0.835 0.842 0.844 0.847 0.853 0.864 0.850 0.860
Dice ↑ 0.892 0.898 0.900 0.898 0.901 0.908 0.908 0.912 0.905 0.910
BER ↓ 0.076 0.074 0.070 0.071 0.068 0.064 0.064 0.052 0.065 0.056

M ↓ 0.031 0.030 0.029 0.029 0.027 0.026 0.027 0.024 0.027 0.025
∆ gains ↑0.81% ↑1.93% ↑1.84% ↑3.13% ↑4.31% ↑3.96% ↑6.86% ↑3.80% ↑6.30%

C
O
D
1
0
K

[4
1
]

PA ↑ 0.972 0.972 0.972 0.972 0.974 0.974 0.973 0.974 0.972 0.973
Fmax
β ↑ 0.808 0.811 0.813 0.814 0.817 0.819 0.819 0.823 0.810 0.810

Fmean
β ↑ 0.730 0.734 0.738 0.737 0.741 0.747 0.746 0.752 0.740 0.745

Fω
β ↑ 0.717 0.720 0.722 0.724 0.729 0.734 0.730 0.742 0.717 0.726

Sm ↑ 0.828 0.831 0.834 0.833 0.837 0.840 0.836 0.846 0.833 0.839
Em ↑ 0.878 0.882 0.886 0.884 0.890 0.893 0.893 0.901 0.890 0.895

IOU ↑ 0.663 0.667 0.671 0.670 0.677 0.680 0.679 0.689 0.665 0.671
Dice ↑ 0.753 0.755 0.756 0.758 0.761 0.764 0.761 0.768 0.747 0.751
BER ↓ 0.135 0.132 0.127 0.130 0.123 0.119 0.121 0.114 0.133 0.126

M ↓ 0.033 0.032 0.032 0.031 0.030 0.030 0.031 0.028 0.032 0.030
∆ gains ↑0.83% ↑1.46% ↑1.54% ↑2.81% ↑3.44% ↑2.81% ↑4.94% ↑0.76% ↑2.45%

D
U
T

[2
6
7
]

PA ↑ 0.931 0.932 0.934 0.934 0.935 0.937 0.937 0.939 0.937 0.939
Fmax
β ↑ 0.892 0.895 0.896 0.896 0.899 0.901 0.899 0.905 0.901 0.910

Fmean
β ↑ 0.863 0.867 0.871 0.872 0.875 0.881 0.879 0.887 0.878 0.887

Fω
β ↑ 0.840 0.844 0.847 0.847 0.851 0.854 0.852 0.861 0.854 0.864

Sm ↑ 0.837 0.840 0.845 0.844 0.850 0.854 0.852 0.862 0.853 0.866
Em ↑ 0.872 0.877 0.883 0.882 0.887 0.892 0.892 0.908 0.886 0.905

IOU ↑ 0.779 0.784 0.790 0.788 0.796 0.804 0.800 0.816 0.805 0.822
Dice ↑ 0.855 0.859 0.863 0.865 0.870 0.874 0.872 0.882 0.874 0.885
BER ↓ 0.107 0.099 0.092 0.089 0.084 0.800 0.084 0.072 0.080 0.068

M ↓ 0.079 0.076 0.074 0.071 0.070 0.069 0.070 0.064 0.070 0.064
∆ gains ↑1.47% ↑2.74% ↑3.39% ↑4.40% ↑5.31% ↑4.64% ↑7.50% ↑5.08% ↑8.03%

S
B
U

[1
8
2
]

PA ↑ 0.972 0.974 0.975 0.975 0.976 0.977 0.977 0.978 0.976 0.976
Fmax
β ↑ 0.917 0.921 0.924 0.923 0.927 0.931 0.930 0.937 0.927 0.934

Fmean
β ↑ 0.881 0.886 0.891 0.890 0.893 0.897 0.896 0.903 0.894 0.900

Fω
β ↑ 0.873 0.876 0.877 0.876 0.880 0.883 0.882 0.889 0.877 0.883

Sm ↑ 0.870 0.873 0.875 0.876 0.878 0.881 0.880 0.886 0.875 0.881
Em ↑ 0.944 0.946 0.949 0.948 0.951 0.952 0.951 0.957 0.950 0.954

IOU ↑ 0.825 0.831 0.836 0.833 0.839 0.843 0.842 0.848 0.836 0.840
Dice ↑ 0.882 0.885 0.888 0.888 0.891 0.893 0.894 0.899 0.885 0.892
BER ↓ 0.072 0.071 0.065 0.067 0.065 0.063 0.063 0.059 0.067 0.064

M ↓ 0.031 0.030 0.029 0.029 0.027 0.027 0.028 0.025 0.028 0.026
∆ gains ↑0.78% ↑2.20% ↑1.85% ↑3.07% ↑3.59% ↑3.22% ↑5.39% ↑2.29% ↑3.68%

G
D
D

[1
3
1
]

PA ↑ 0.943 0.939 0.943 0.944 0.947 0.947 0.947 0.951 0.946 0.949
Fmax
β ↑ 0.934 0.925 0.928 0.929 0.934 0.937 0.939 0.944 0.940 0.946

Fmean
β ↑ 0.923 0.925 0.929 0.927 0.931 0.933 0.933 0.937 0.931 0.935

Fω
β ↑ 0.912 0.913 0.914 0.913 0.916 0.917 0.917 0.921 0.912 0.915

Sm ↑ 0.881 0.883 0.885 0.884 0.886 0.888 0.888 0.892 0.870 0.876
Em ↑ 0.917 0.917 0.923 0.922 0.925 0.927 0.923 0.933 0.908 0.914

IOU ↑ 0.878 0.882 0.886 0.885 0.891 0.893 0.890 0.898 0.890 0.896
Dice ↑ 0.922 0.925 0.925 0.927 0.929 0.930 0.929 0.935 0.093 0.932
BER ↓ 0.054 0.052 0.052 0.052 0.052 0.050 0.049 0.049 0.051 0.050

M ↓ 0.055 0.055 0.054 0.054 0.053 0.051 0.052 0.049 0.054 0.053
∆ gains ↑0.37% ↑0.81% ↑0.79% ↑1.27% ↑2.15% ↑2.09% ↑3.13% ↓8.16% ↑1.54%

O
R
S
I-
4
1
9
9
[1
7
8
]

PA ↑ 0.966 0.967 0.967 0.968 0.967 0.968 0.967 0.969 0.968 0.970
Fmax
β ↑ 0.864 0.867 0.869 0.870 0.873 0.877 0.876 0.883 0.876 0.888

Fmean
β ↑ 0.834 0.837 0.840 0.839 0.845 0.847 0.846 0.853 0.845 0.853

Fω
β ↑ 0.830 0.831 0.833 0.833 0.836 0.838 0.836 0.840 0.838 0.848

Sm ↑ 0.850 0.854 0.856 0.855 0.858 0.860 0.860 0.864 0.862 0.869
Em ↑ 0.919 0.923 0.926 0.925 0.929 0.930 0.929 0.935 0.932 0.938

IOU ↑ 0.754 0.755 0.758 0.760 0.762 0.763 0.763 0.767 0.766 0.778
Dice ↑ 0.816 0.820 0.824 0.823 0.829 0.832 0.830 0.839 0.835 0.848
BER ↓ 0.111 0.105 0.103 0.103 0.101 0.100 0.101 0.095 0.098 0.089

M ↓ 0.037 0.037 0.036 0.036 0.034 0.034 0.035 0.032 0.035 0.031
∆ gains ↑0.79% ↑1.47% ↑1.47% ↑2.50% ↑2.78% ↑2.32% ↑4.06% ↑2.77% ↑5.59%

even tentacles of the mantis are retained well.
Besides, we show the visual results of the gate
units in the two-stream network for RGB-D SOD,
as shown in Fig. 10. Intuitively, the depth branch
has more significant and pure position and edge
information about the foreground (cloth) than the
RGB branch on E4, E2 and E1, thus distributes
larger gate weights correspondingly in cross-modal
fusion.
• Folded Atrous Convolution. Based on the
gated dual branch network, we design a series
of experimental options to verify the effective-
ness of the folded atrous convolution. Tab. 15

Image D5 D4 D3 D2 D1 GT

Fig. 9 Visual comparison of feature maps for show-
ing the effect of the multi-level gate units. D5 ∼ D1
represent the feature maps of each decoder block from
high level to low level. Odd rows and even rows are
the results of the FPN baseline without or with multi-
level gate units, respectively.

0.15

0.69

0.81

0.25

0.05

0.48

0.55

0.40

0.28

0.98

0.46

0.64

0.46

0.53

0.40

E(RGB&Depth)/C/D {5~1}RGB&Depth GT

Fig. 10 Visual results of feature maps. Each RGB-D
input image corresponds to four rows of feature maps.
The first two rows are RGB and Depth encoder fea-
ture maps (E5 - E1), respectively. The third row is the
cross-modal fusion feature maps (C5 - C1). The last
row is the decoder feature maps (D5 - D1). The nam-
ing of these feature maps is consistent with those in
Fig. 7.

illustrates the results in detail. We adopt the
atrous convolution with dilation rates of [2, 4, 6]
and the same dilation rates are also applied to
the folded atrous convolution. It can be observed
that the folded atrous convolution consistently
yields significant performance improvement at
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Fig. 11 Illustration of the benefit of each component.

each dilation rate than the corresponding atrous
convolution in terms of all ten metrics. And
the single-layer Fold(6) already performs better
than the ASPP and DenseASPP of aggregating
three atrous convolution layers. The Fold-ASPP
and Fold-DenseASPP naturally outperforms the
ASPP and DenseASPP, respectively. Our fold
operation can naturally increase the receptive
field. For a fair comparison, we can also see that
compared with Atrous(4) with the same recep-
tive field, Fold(2) still has an advantage under all
metrics.

Fig.11 shows visual results of the above abla-
tion studies on some examples. It can be seen that
the gated FPN model accurately determines where
is the foreground object. With the help of Fold-
ASPP, the overall integrity of the object is further
captured. It should also be noted that the gated
parallel branch can improve perceptual results
greatly by highlighting the fore/back-ground dif-
ference and preserving the intra-class consistency,
thereby yielding the sharpened boundary.

4.6 Gate Unit Meets Transformer

With the development of vision transformer [179],
recent binary works achieve good performance on
many important benchmarks. In this section, we
first analyse the advantages of GateNet compared
to transformer-based methods in terms of accu-
racy and efficiency. Next, we quantitatively and
qualitatively show the limitations of transformer-
based methods in cross-branch prediction. Finally,

Camouflaged Object Segmentation Polyp Segmentation

Image

DTIT

SSFormer

GateNet

Ground

Truth

Fig. 12 Qualitative evaluation of DTIT [122],
SSFormer [187] and GateNet. For DTIT and SSFormer,
Polyp segmentation and camouflaged object segmentation
are their cross-branch validations, respectively.

we explore the positive impact of the gate unit on
transformer.
• Advantages in Accuracy and Efficiency. In
Tab. 16, we can see that the GateNet has obvi-
ous advantages in accuracy, model size, training
time, inference speed and memory requirements.
Compared to transformer-based architectures [64,
69, 122, 139], GateNet achieves a good balance
between accuracy and efficiency.
• Advantages in Cross-branch Prediction.
To investigate the performance of transformer-
based methods on cross-branch prediction, we
separately select two representative transformer-
based methods [122, 187] from camouflaged object
segmentation and polyp segmentation field for
cross-branch training and then conduct quanti-
tative and qualitative evaluation. As shown in
Tab. 17, both two transformer-based methods
perform poorly in cross-branch comparison. We
summarize some instructive reasons as follows:
I) Motivation of Designs. The motivation of
GateNet is to solve the generalized binary seg-
mentation challenge. We propose the gate unit,
fold-aspp and residual parallel branch for sup-
pressing background inference, perceiving multi-
scale objects and restoring edge details, respec-
tively. As a result, GateNet can be well generalized
to diverse binary segmentation tasks. However,
SSFormer [187] and DTIT [122] focus more on
specific characteristics within the sub-branch and
propose expert designs for polyp segmentation
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Table 16 Accuracy and efficiency comparison with different transformer-based methods on the COD10K [41] test set.
The best scores are highlighted in red.

Method Publication Backbone Parameters ↓ Training Time ↓ Inference Speed ↑ Inference Memory ↓ Fω
β ↑ Sm ↑ Em ↑

OSformer [139] ECCV 2022 ResNet-50 46.6 MB 10 Hours 15 Fps 2.5 GB 0.685 0.813 0.893

DTIT [122] ICPR 2022 MiT-B5 253.7 MB 23 Hours 8 Fps 4.5 GB 0.695 0.824 0.896

HitNet [64] AAAI 2023 PvTv2-B2 24.4 MB 13 Hours 7 Fps 4.2 GB 0.806 0.868 0.936

FSPNet [69] CVPR 2023 ViT-B 84.2 MB 64 Hours 19 Fps 3.2 GB 0.735 0.851 0.930

GateNet - ResNet-50 29.68 MB 6 Hours 55 Fps 2.1 GB 0.742 0.846 0.901

GateNet - PvTv2-B2 20.32 MB 5 Hours 58 Fps 1.9 GB 0.813 0.876 0.942

GateNet - ViT-B 43.12 MB 8 Hours 43 Fps 2.7 GB 0.828 0.888 0.947

Table 17 Cross-branch validation using two
transformer-based methods on camouflaged object dataset
COD10K [41] and polyp dataset CVC-ClinicDB [5].

Method COD10K CVC-ClinicDB

Fω
β ↑ Sm ↑ Em ↑ IOU ↑ Dice ↑

SSFormer [187] 0.635 0.773 0.848 0.876 0.927

DTIT [122] 0.695 0.824 0.896 0.749 0.803

GateNet 0.742 0.846 0.901 0.902 0.943

and camouflaged object segmentation, respec-
tively. SSFormer [187] introduces the multi-stage
pyramid transformer architecture and proposes
the progressive locality decoder to smooth and
emphasise the local features in the transformer,
thereby improving the detailed information pro-
cessing ability of the neural network. Authors
think that the morphology of polyps is variable,
but the structure of polyp images is relatively
simple. Therefore, SSFormer [187] focuses on cap-
turing the morphology and local information but
ignores the background inference, which makes it
perform poorly in camouflaged object segmenta-
tion where background scenes are often complex,
as shown in Fig. 12. DTIT [122] is bio-inspired
by the discovery of camouflaged objects, in which
the boundary feature is considered as query to
improve the object detection and the object fea-
ture is taken as query to improve the boundary
detection. The object and boundary detection are
fully interacted by multi-head self-attention. How-
ever, DTIT [122] ignores the scale varying in
different objects and may produce failure predic-
tion for tiny or large objects, as shown in Fig. 12.
II) Model Complexity. Transformer-based mod-
els usually have high complexity and require a
large amount of data and computational resources
for training. If they are not adequately trained
or the training data is not sufficient, it may
lead to performance degradation when conduct-
ing cross-branch prediction. III) Hyperparameter
Selection. Many works [36, 177, 292] show that the
transformer-based methods are very sensitive for

Multi-Head 

Self-Attention
FFN

V
K
Q

G G

…Multi-Head 

Self-Attention
FFN

V
K
Q

G G

Fig. 13 Illustration of the simple gated transformer.

Table 18 Qualitative evaluation of applying simple
gated transformer and multi-level gate units to existing
transformer-based COD methods on the COD10K test set.

Method Publication Backbone Fω
β ↑ Sm ↑ Em ↑

DTIT [122] ICPR 2022 MiT-B5 0.695 0.824 0.896

DTIT-Gate ICPR 2022 MiT-B5 0.721 0.847 0.928

FSPNet [69] CVPR 2023 ViT-B 0.735 0.851 0.930

FSPNet-Gate CVPR 2023 ViT-B 0.764 0.869 0.938

the learning rate and optimizer settings during the
training phase. Improper choice of hyperparam-
eters may degrade the performance of the cross-
branch model. Different from the transformer-
based approaches, GateNet consistently achieves
good results with uniform training settings for
all tasks, including image size, enhancement tech-
niques, optimizer parameters, learning rate, and
the numbers of epoch.

• Gated Mechanism Powers Trans-
former. We explore the potential of improving
the transformer-based methods by incorporating
gate design. The vanilla transformer uses all pass
skip connection to fuse the original input fea-
tures and the output features through multi-head
self-attention (MHSA) and FFN. With the help
of MHSA and FFN, query, key and value can
generate task-specific strong attention features.
However, all pass skip connection may introduce
incompatible interference information and reduce
the performance of the transformer. To this end,
we naturally apply our gate unit to the vanilla
transformer. We integrate the initial features and
the output features through MHSA/FFN to gen-
erate gate values, which can adaptively control
the information transition from skip connection.
The internal structure of the simple gated trans-
former is shown in Fig. 13. We replace the vanilla
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transformer in the transformer-based methods [69,
122] with the gated transformer and multi-level
gate units to evaluate the effectiveness of our
designs. In Tab. 18, we can see that the gated
versions consistently surpass the corresponding
vanilla transformer versions.

5 Discussion

In this section, we further provide deeper theoreti-
cal explanation of the multi-level gated mechanism
and give some potential applications:
• Prototype I: In cognitive science, inhibitory neu-
rons, also known as interneurons, play a crucial
inhibitory role in the nervous system. Inhibitory
neurons play a crucial inhibitory role by balanc-
ing excitation and inhibition, improving signal
quality, participating in cognitive and emotional
processes, and protecting the nervous system.
Firstly, they balance excitation and inhibition by
suppressing the activity of other neurons, which
is important for maintaining normal nervous sys-
tem function. Secondly, they improve signal qual-
ity by reducing neuronal noise and interference,
increasing the signal-to-noise ratio and making the
signal clearer and more reliable, thereby enhanc-
ing the brain’s information processing capabilities.
In addition, they participate in various cognitive
and emotional processes including working mem-
ory, long-term memory, learning, attention, and
emotional regulation by regulating the excitabil-
ity and inhibitory nature of neurons. Lastly, they
protect the nervous system from the harm of
excessive excitation or inhibition, thereby avoid-
ing the occurrence of some neurological diseases.
• Prototype II: In circuit electronics analysis, a
gated circuit can control the on/off state of the
output signal based on the voltage of the input sig-
nal. For a combinational circuit with n outputs, we
only need add n−1 gates without other additional
designs. In addition, gated circuits are less sus-
ceptible to external interference, which can ensure
the stability and reliability of the circuit. Due
to their fast state transitions, gated circuits are
well suited for applications that require high-speed
digital control. In terms of achieving adaptive reg-
ulation and balance of circuit output, multi-level
gated unit circuits combined with feedback con-
trol mechanisms play a crucial role. For example,
resistors and capacitors can be used to adjust the
impedance and phase of the circuit to balance

Table 19 Quantitative comparison of different semantic
segmentation methods on the Cityscapes [30] val set.
GateNet-JT and GateNet-ST refer to models trained
separately or jointly for each category. The best scores are
highlighted in red.

Method Publication Backbone mIoU ↑
FCN [123] CVPR 2015 ResNet-101 76.6

EncNet [236] CVPR 2018 ResNet-101 76.9

PSPNet [258] CVPR 2017 ResNet-101 78.5

CCNet [70] ICCV 2019 ResNet-101 80.2

DeeplabV3+ [14] ECCV 2018 ResNet-101 80.9

SETR [276] CVPR 2021 ViT-Large 82.2

SegFormer [216] NeurIPS 2021 MiT-B5 84.0

Mask2Former [20] CVPR 2022 Swin-Large 84.3

GateNetv2-JT - ResNet-101 78.3

GateNetv2-JT - Swin-Large 80.4

GateNetv2-JT - ConNext-Large 80.6

GateNetv2-ST - ResNet-101 82.8

GateNetv2-ST - Swin-Large 84.9

GateNetv2-ST - ConNext-Large 85.2

different sections. Furthermore, feedback control
and adaptive control methods can be employed to
dynamically adjust the work state of the circuit to
achieve adaptive balance.
• Modeling guidance: Prototype I provides the
basic principles of biological neural networks for
introducing gated mechanisms into artificial neu-
ral networks. Prototype II provides our GateNet
with modular functional guidance. On the one
hand, our gate units suppress both channel-wise
and spatial feature response. In this way, the net-
work actually learns adaptive thresholding. The
area, in which feature values are below this thresh-
old, has a lower response in the prediction, while
the feature values above this threshold correspond
to the task-specific activation area. It helps the
decoder to gradually filter out the region with
strong feature response. Our gate unit achieves the
same function as the gated circuit in controlling
the on/off state of the output signal based on the
voltage of the input signal. On the other hand, our
GateNet only inserts several gate units between
encoder blocks and decoder blocks of the FPN
baseline. It has the same convenience of design as
the gated circuit. Finally, the backward propaga-
tion in the neural networks has the same function
as the feedback controlling mechanism in circuit
electronics. Therefore, our GateNet has the same
adaptive balance function as the gated circuit.
• Limitations: The proposed gated mechanism is
unsuitable for the multi-class semantic segmen-
tation task. Because this task needs to treat all
pixels of the whole image equally importantly and
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Fig. 14 Some examples of surface defect detection (e.g.,
crack, magnetic tiles, car parts, electronic components).

all categories have the same importance, the infor-
mation suppression design is out of place. We
apply GateNet separately for semantic segmen-
tation of each class on the popular Cityscapes
dataset [30]. In Tab. 19, we can see that GateNet-
ST outperforms other models, but GateNet-JT
performs poorly. Therefore, the proposed gated
mechanism has advantages in binary segmentation
focusing on a single class, rather than the semantic
segmentation task that require balancing multiple
classes. This also means the GateNet has wider
applicability to binary segmentation problems.
• Application: In this paper, we have given
detailed experimental analyses in ten popular
binary segmentation tasks. Besides, GateNet has
potential application in the field of industry with
complex scenes as shown in Fig 14. We hope
that this study can provide deep insights into the
underlying design for more binary segmentation
tasks and spark novel ideas.

6 Conclusions

As far as we know, this is the first work to
comprehensively review recent progress in binary
segmentation, which summarizes more than 140
fully supervised models according to task settings,
technique contributions, and learning strategies.
To unify all the sub-branches and establish a
fair model benchmark to promote the prosperous
development of the binary segmentation field, we
propose a novel yet general gated network archi-
tecture. We first adopt multi-level gate units to
balance the contribution of each encoder block
and suppress the activation of the features of
non-task-aware regions, which can provide useful
context information for the decoder while mini-
mizing interference. We quantitatively reveal the
role played by features at all levels of the encoder
for different segmentation tasks, which provides

a new perspective on the interpretability of deep
learning. Next, we use the Fold-ASPP to gather
multi-scale semantic information for the decoder.
By the folded operation, the atrous convolution
achieves a local-in-local effect, which not only
expands the receptive field but also retains the
correlation among local sampling points. Finally,
to further supplement the details, we combine
all encoder features in parallel and construct a
residual structure. Experimental results on 33
benchmark datasets towards 10 binary segmenta-
tion tasks demonstrate that the proposed model
outperforms 42 state-of-the-art methods under 10
evaluation metrics.
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Pritch, and Alexander Hornung. Saliency
filters: Contrast based filtering for salient
region detection. In CVPR, pages 733–740,
2012.

[143] Yongri Piao, Wei Ji, Jingjing Li, Miao
Zhang, and Huchuan Lu. Depth-induced
multi-scale recurrent attention network for
saliency detection. In ICCV, pages 7254–
7263, 2019.

[144] Yongri Piao, Zhengkun Rong, Miao Zhang,
Weisong Ren, and Huchuan Lu. A2dele:
Adaptive and attentive depth distiller for
efficient rgb-d salient object detection. In
CVPR, pages 9060–9069, 2020.

[145] Xuebin Qin, Zichen Zhang, Chenyang
Huang, Masood Dehghan, Osmar R Zaiane,
and Martin Jagersand. U2-net: Going
deeper with nested u-structure for salient
object detection. Pattern Recognition,
106:107404, 2020.

[146] Xuebin Qin, Zichen Zhang, Chenyang
Huang, Chao Gao, Masood Dehghan, and
Martin Jagersand. Basnet: Boundary-aware
salient object detection. In CVPR, pages
7479–7489, 2019.

[147] Jingjing Ren, Xiaowei Hu, Lei Zhu, Xuemiao
Xu, Yangyang Xu, Weiming Wang, Zijun
Deng, and Pheng-Ann Heng. Deep texture-
aware features for camouflaged object detec-
tion. IEEE TCSVT, 2021.

[148] Zhixiang Ren, Shenghua Gao, Liang-Tien
Chia, and Ivor Wai-Hung Tsang. Region-
based saliency detection and its applica-
tion in object recognition. IEEE TCSVT,
24(5):769–779, 2013.

[149] Olaf Ronneberger, Philipp Fischer, and
Thomas Brox. U-net: Convolutional net-
works for biomedical image segmentation. In
MICCAI, pages 234–241, 2015.

[150] Zhao Rui, Wanli Ouyang, and Xiaogang
Wang. Unsupervised salience learning for
person re-identification. In CVPR, 2013.



Springer Nature 2021 LATEX template

34 Article Title

[151] Anat Caspi Linda Shapiro Sachin Mehta,
Mohammad Rastegari and Hannaneh
Hajishirzi. Espnet: Efficient spatial pyra-
mid of dilated convolutions for semantic
segmentation. In ECCV, 2018.

[152] Mark Sandler, Andrew Howard, Menglong
Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and
linear bottlenecks. In CVPR, pages 4510–
4520, 2018.

[153] Yutian Shen, Xiao Jia, and Max Q-H Meng.
Hrenet: A hard region enhancement network
for polyp segmentation. In MICCAI, pages
559–568, 2021.

[154] Yutian Shen, Xiao Jia, Jin Pan, and Max
Q-H Meng. Aprnet: Alternative prediction
refinement network for polyp segmentation.
In IEEE EMBC, pages 3114–3117, 2021.

[155] Yutian Shen, Ye Lu, Xiao Jia, Fan Bai,
and Max Q-H Meng. Task-relevant fea-
ture replenishment for cross-centre polyp
segmentation. In MICCAI, pages 599–608,
2022.

[156] Jianping Shi, Li Xu, and Jiaya Jia. Discrim-
inative blur detection features. In CVPR,
pages 2965–2972, 2014.

[157] Juan Silva, Aymeric Histace, Olivier
Romain, Xavier Dray, and Bertrand
Granado. Toward embedded detection of
polyps in wce images for early diagnosis of
colorectal cancer. IJCARS, 9:283–293, 2014.

[158] Karen Simonyan and Andrew Zisserman.
Very deep convolutional networks for large-
scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[159] Avishek Siris, Jianbo Jiao, Gary KL Tam,
Xianghua Xie, and Rynson WH Lau. Scene
context-aware salient object detection. In
ICCV, pages 4156–4166, 2021.

[160] P Skurowski, H Abdulameer, J B laszczyk,
T Depta, A Kornacki, and P Kozie l. Animal
camouflage analysis: Chameleon database.
Unpublished Manuscript, 2018.

[161] Mengke Song, Wenfeng Song, Guowei Yang,
and Chenglizhao Chen. Improving rgb-d
salient object detection via modality-aware
decoder. IEEE TIP, 31:6124–6138, 2022.

[162] Martin Stevens and Sami Merilaita. Ani-
mal camouflage: current issues and new
perspectives. Philosophical Transactions of
the Royal Society B: Biological Sciences,
364:423–427, 2009.

[163] Jinming Su, Jia Li, Yu Zhang, Changqun
Xia, and Yonghong Tian. Selectivity or
invariance: Boundary-aware salient object
detection. In ICCV, pages 3799–3808, 2019.

[164] Fuming Sun, Peng Ren, Bowen Yin, Fasheng
Wang, and Haojie Li. Catnet: A cascaded
and aggregated transformer network for rgb-
d salient object detection. IEEE TMM,
2023.

[165] Peng Sun, Wenhu Zhang, Huanyu Wang,
Songyuan Li, and Xi Li. Deep rgb-d saliency
detection with depth-sensitive attention and
automatic multi-modal fusion. In CVPR,
pages 1407–1417, 2021.

[166] Yujia Sun, Shuo Wang, Chenglizhao Chen,
and Tian-Zhu Xiang. Boundary-guided
camouflaged object detection. arXiv
preprint arXiv:2207.00794, 2022.

[167] Nima Tajbakhsh, Suryakanth R Gurudu,
and Jianming Liang. Automated polyp
detection in colonoscopy videos using shape
and context information. IEEE TMI,
35:630–644, 2015.

[168] Naoya Takahashi and Yuki Mitsufuji.
Densely connected multidilated convolu-
tional networks for dense prediction tasks.
In CVPR, pages 993–1002, 2021.

[169] Mingxing Tan and Quoc Le. Efficientnet:
Rethinking model scaling for convolutional
neural networks. In ICML, pages 6105–6114,
2019.

[170] Bin Tang, Zhengyi Liu, Yacheng Tan, and
Qian He. Hrtransnet: Hrformer-driven two-
modality salient object detection. IEEE



Springer Nature 2021 LATEX template

Article Title 35

TCSVT, 33:728–742, 2022.

[171] Chang Tang, Xinwang Liu, Shan An, and
Pichao Wang. Br2net: Defocus blur detec-
tion via a bidirectional channel attention
residual refining network. IEEE TMM,
23:624–635, 2020.

[172] Chang Tang, Xinwang Liu, Xiao Zheng,
Wanqing Li, Jian Xiong, Lizhe Wang,
Albert Y Zomaya, and Antonella Longo.
Defusionnet: Defocus blur detection via
recurrently fusing and refining discrimi-
native multi-scale deep features. IEEE
TPAMI, 44:955–968, 2020.

[173] Chang Tang, Xinwang Liu, Xinzhong Zhu,
En Zhu, Kun Sun, Pichao Wang, Lizhe
Wang, and Albert Zomaya. R2mrf: Defocus
blur detection via recurrently refining multi-
scale residual features. In AAAI, pages
12063–12070, 2020.

[174] Chang Tang, Xinzhong Zhu, Xinwang Liu,
Lizhe Wang, and Albert Zomaya. Defusion-
net: Defocus blur detection via recurrently
fusing and refining multi-scale deep features.
In CVPR, pages 2700–2709, 2019.

[175] Lv Tang, Bo Li, Yijie Zhong, Shouhong
Ding, and Mofei Song. Disentangled high
quality salient object detection. In ICCV,
pages 3580–3590, 2021.

[176] Hugo Touvron, Matthieu Cord, Matthijs
Douze, Francisco Massa, Alexandre Sablay-
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Appendix A Qualitative
Evaluation

Fig. A1 - Fig. A10 illustrate some visual com-
parisons on each sub-task. We summarize the
advantages of the GateNet compared to others
when facing some challenges: I) Interference
produced by complex. In camouflaged object
detection and poly segmentation tasks, foreground
objects usually share the similar appearance to the
background, which can easily deceive predictors.
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But the GateNet can accurately capture the hid-
den objects and separate them from the surround-
ing environment (see the Fig. A9 and Fig. A10).
The gated mechanism also plays an important role
in RGB -D salient object detection. As shown
in Fig. A3, the proposed two-stream GateNet
can effectively utilize the guidance information
provided by the high-quality depth map while
suppressing the interference information from the
low-quality depth map, thereby identifying the
whole object precisely. II) Interference pro-
duced by adjacent objects. In the real world,
shadows often exist on the ground or desktop, and
are closely adjacent to the original object. This
characteristic requires shadow detection networks
to have the ability to distinguish between adja-
cent objects. As shown in Fig. A5, most methods
are disturbed by the surface or the original object,
but our method can focus on the shadow regions.
III) The foreground exists multiple or small
objects. On the one hand, glass-like objects are
often present in groups in the real world, which
poses a serious challenge to the perception capa-
bility of the network for the multiple objects. On
the other hand, small objects usually appear in
remote sensing images. Benefiting from the Fold-
ASPP, both multiple and small objects can be
localized accurately. Fig. A4 and Fig. A7 show
that our method can accurately distinguish each
independent connected region without sticking to
each other. GateNet is the only one can pro-
vide clean prediction maps and maintain the basic
shape of the aircraft (see the 6th - 8th columns
in Fig. A2). IV) Boundary and details. Our
GateNet has a mix feature aggregation decoder
that a parallel branch by concatenating the out-
put of the progressive branch and the features of
the gated encoder, so that the residual information
complementary to the progressive branch is sup-
plemented to generate the final prediction. In this
way, the prediction can restore more details, there-
fore, the limbs and even tentacles of the insects
are retained well (see the 3th and 8th columns
in Fig. A9). V) Regional consistency. In defo-
cus blur detection task, the focused area usually
has incomplete semantic information because the
blurred region may also belong to the seman-
tic part of the foreground. Benefiting from the
folded operation, our model can obtain more sta-
ble structural features to improve the intra-class
consistency. From the results in Fig. A6, it can be

observed that our method can segment the fore-
ground well while the other methods more or less
lose similar areas inside or around focused regions.
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MINet

ITSD

F3Net

Fig. A1 Visual comparison between our GateNet results and the state-of-the-art methods (CTDNet [273], VST [116],
LDF [203], Auto-MSF [242], KRN [220], MINet [136], ITSD [278], F3Net [202]) on RGB SOD datasets.
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Fig. A2 Visual comparison between our GateNet results and the state-of-the-art methods (RRNet [29], MJRBM [178],
DAFNet [249]) on ORSI SOD datasets.
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Fig. A3 Visual comparison between our GateNet results and the state-of-the-art methods (TriTransNet [121], SPNet [280],
DSNet [204], UTA [272], RD3D [15], DCF [74]) on RGB-D SOD datasets.
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Fig. A4 Visual comparison between our GateNet results and the state-of-the-art methods (EBLNet [58], GDNet [131]) on
Glass Object Detection datasets.
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Fig. A5 Visual comparison between our GateNet results and the state-of-the-art methods (DSD [275], BDRAR [289],
ADNet [87], DSC [67]) on Shadow Detection datasets.
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Fig. A6 Visual comparison between our GateNet results and the state-of-the-art methods (DENets [263], IS2CNet [256],
SG [264], Depth-Distill [31], CENet [268]) on Defocus Blur Detection datasets.
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Fig. A7 Visual comparison between our GateNet results and the state-of-the-art method (Translab [217]) on Transparent
Object Detection datasets.
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Fig. A8 Visual comparison between our GateNet results and the state-of-the-art method (MirrorNet [229]) on Mirror
Detection datasets.
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Fig. A9 Visual comparison between our GateNet results and the state-of-the-art methods (UGTR [225], IS2CNet [233],
RankNet [125], PFNet [130], SINet [41]) on Camouflaged Object Detection datasets.
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Fig. A10 Visual comparison between our GateNet results and the state-of-the-art methods (UACA [85], MSNet [270],
SANet [201], PraNet [42], SFA [48], UNet++ [285], UNet [149]) on Polyp Segmentation datasets.
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