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MULTIVALUED SECTIONS AND SELF-MAPS OF SPHERE

BUNDLES

M. C. CRABB

Abstract. Let G be a finite group and V a finite dimensional (non-zero) or-
thogonal G-module such that, for each prime p dividing the order of G, the

subspace of V fixed by a Sylow p-subgroup of G is non-zero and, if the dimen-
sion of V is odd, has dimension greater than 1. Using ideas of Avvakumov,
Karasev, Kudrya and Skopenkov and work of Noakes on self-maps of sphere
bundles, we show that, for any principal G-bundle P → X over a compact
ENR X, there exists a G-map from P to the unit sphere S(V ) in V .

1. Introduction

Let G be a (non-trivial) finite group and let V be an orthogonal G-module of
dimension n > 1. Given a principal G-bundle P → X over a compact ENR X we
form the n-dimensional real vector bundle ξ = P ×G V and its associated sphere
bundle S(ξ) = P ×G S(V ) (where S(V ) is the unit sphere in V ).

Theorem 1.1. Suppose that either
(a) for each prime p dividing the order of G the fixed subspace V H of a Sylow
p-subgroup H of G is non-zero and, if n is odd, has dimension greater than 1, or
(b) n is odd, the fixed subspace V H of a Sylow 2-subgroup H is non-zero and
dimX < 2(n− 1).

Then there exists a G-equivariant map

P → S(V ),

or, equivalently, a section of the sphere bundle S(ξ).

For a fixed integer q > 1, the symmetric group Sq, the group of permutations
of the set I = {1, . . . , q}, acts on the Euclidean vector space R[I] with orthonormal
basis ei, i ∈ I. Let L denote the (q − 1)-dimensional quotient of R[I] by the fixed
subspace generated by eI = e1 + . . . + eq. We give L the inner product for which
the orthogonal complement of ReI projects isometrically onto L. Given a prime p
we can write q =

∑

r arp
r, where 0 6 ar < p, and set αp(q) =

∑

r ar. Then, for
a Sylow p-subgroup H of Sq, the dimension of the fixed subspace LH is equal to
αp(q)− 1. (See the discussion in Section 3.)

Thus we deduce from Theorem 1.1(a) the following recent result of Avvakumov,
Karasev, Kudrya and Skopenkov [1, 2], which was applied in [3] to the topological
Tverberg theorem.

Date: August 2022, revised May2024.
2020 Mathematics Subject Classification. Primary 55M25, 55M35, 55R25, 55P69, 55S40,

57S17; Secondary 55M20, 55R70.
Key words and phrases. Sylow p-subgroup, sphere bundle, multivalued section, Euler class,

Tverberg theorem.

1

http://arxiv.org/abs/2208.09637v2
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Corollary 1.2. ([1, 2, 3].) Let P → X be a principal Sq-bundle over a compact
ENR X and let λ denote the real vector bundle P ×Sq

L → X of dimension q − 1
over X. Suppose that q is not a prime power and that k > 1 is a positive integer.
If k = 1 and q is even, suppose further that αp(q) > 2 for every prime p.

Then there exists an Sq-equivariant map

P → S(Rk ⊗ L)

to the unit sphere in Rk⊗L, or, equivalently, a section of the sphere bundle S(Rk⊗λ)
of Rk ⊗ λ . �

The traditional approach to such problems, following Sullivan [16], is to localize
at a prime p. If H 6 G is a Sylow p-subgroup (trivial if p does not divide the
order of G) and V H is non-zero, then there is an H-equivariant map P → S(V ).
Equivalently, the pullback S(π∗ξ) to the finite cover π : P/H → X = P/G has a
section. Since the order of this cover, the index of H in G, is prime to p, it follows
by a standard argument that the p-local obstruction to the existence of a section of
S(ξ) is zero in the metastable range: dimX < 2(n− 1). If this holds for all primes
p, the global obstruction is zero and the desired section, or equivariant map, exists
in this range of dimensions. (An expository proof along these lines for the case of
the symmetric group Sq was included in [8, Proposition 6.5].) Integral cohomology
is enough to establish the result by the same reasoning in the range dimX 6 n, as
in [5, Theorem 5.1] and [4, Theorem 1.2].

The new proof in [1, 2, 3] without the dimensional restriction is surprisingly
elementary, especially when linked to a result of Noakes [15] on the degree of self-
maps of sphere bundles. This connection is explained in Section 2, where the main
construction in [3] is formulated in the language of multivalued sections of sphere
bundles and part (a) of Theorem 1.1 is established. In Section 3 we discuss the
extension (no longer a corollary) of Corollary 1.2 that was established in [2] to the
case in which k = 1 and q is even but not twice a power of an odd prime and give
examples to show that this restriction on q is necessary. The more technical Section
4 describes the stable homotopy-theoretic argument in the metastable range that
was outlined above and completes the proof of part (b) of Theorem 1.1.

2. Self-maps of sphere bundles

We consider an orthogonal real vector bundle ξ of dimension n over a connected
compact ENR X .

Definition 2.1. For a (fibrewise) self-map f : S(ξ) → S(ξ) of the sphere bundle
of ξ we define the degree of f , deg(f) ∈ Z, to be the degree of the restriction of f
to any fibre, which is independent of the fibre since X is required to be connected.

We review first some results of Noakes [15] from the 1970s, beginning with a
basic construction.

Definition 2.2. For a Euclidean vector space V of dimension at least 2 and an
integer r, we define a continuous map

ρr : S(V )× S(V ) → S(V )

as follows. Given u, v ∈ S(V ) lying in some 2-dimensional subspace E ⊆ V , we may
choose a complex structure on E (compatible with the inner product) and define
ρr(u, v) = zru, where v = zu, z ∈ C, |z| = 1. Since complex conjugation commutes



MULTIVALUED SECTIONS AND SELF-MAPS OF SPHERE BUNDLES 3

with the rth power, this is independent of the choice of complex structure, and,
since ρr(u, u) = u and ρr(u,−u) = (−1)ru, it is independent of the choice of E.

Remark 2.3. More precisely, writing O(C, V ) for the Stiefel manifold of R-linear
isometric maps C →֒ V , we have a surjective map

S(C)×O(C, V ) → S(V )× S(V ), (z, a) 7→ (a(1), a(z)),

and ρr lifts to the map

ρ̃r : S(C)×O(C, V ) → S(V ), (z, a) 7→ (a(1), a(zr)).

This provides a formal proof that ρr is continuous.

When V = C we have the explicit formula

S(C)× S(C) → S(C) : ρr(u, v) = u1−rvr,

from which we see that, in general, ρr(v, u) = ρ1−r(u, v) and, for a second integer
s, ρrs(u, v) = ρr(u, ρs(u, v)). For any V , when r = 0, the map v 7→ ρ0(u, v) = u is
constant; and when r = −1, the map v 7→ −ρ−1(u, v) = v− 2〈v, u〉u is reflection in
the hyperplane orthogonal to u.

Lemma 2.4. Suppose that dimV is even. Then, for a fixed u ∈ S(V ), the map
v 7→ ρr(u, v) : S(V ) → S(V ) has degree r.

The assertion is clear if r = 0 and when dimV = 2 it is evident from the explicit
formula.

Proof. We give a proof from a differentiable viewpoint [13].
Suppose that dimV > 2. Let E ⊆ V be the orthogonal complement of Ru.

Consider the smooth map π : S(C) × S(E) → S(V ) taking (x + yi, e), where
x, y ∈ R, to xu+ ye. The restriction of π : (S(C)−{±1})× S(E) → S(V )−{±u}
is a double cover, with covering involution (x + yi, e) 7→ (x − yi,−e), which is
orientation-preserving, for an appropriate choice of orientations of the connected
manifolds S(C)× S(E) and S(V ), because dimV is even.

Now the map f : v 7→ ρr(u, v) lifts to the smooth map f̃ : (z, e) 7→ (zr, e) :

S(C)× S(E) → S(C)× S(E). Its degree is clearly deg f̃ = r.
The degree of π, for the chosen orientations, is equal to 2. Because the inverse

image of a regular value v in the complement of {±u} consists of two points at each
of which the sign of the determinant of dπ is +1.

Since deg(π) deg(f̃) = deg(π ◦ f̃) = deg(f ◦ π) = deg(f) deg(π), we see that
deg f = r. �

By the symmetry, the degree of the map u 7→ ρr(u, v) : S(V ) → S(V ), for a
fixed v, is equal to 1− r.

Proposition 2.5. (Noakes [15]). Let ξ be an even-dimensional vector bundle. Then
there is a non-negative integer N(ξ) such that there is a self-map S(ξ) → S(ξ) of
degree 1− d if and only if d is divisible by N(ξ).

Proof. Consider two self-maps f, g : S(ξ) → S(ξ). For each r we may form h =
ρr(f, g) : S(ξ) → S(ξ). Its degree, by Lemma 2.4, is given by

deg(h) = (1 − r) deg(f) + r deg(g),

that is, 1− deg(h) = (1 − r)(1 − deg(f)) + r(1 − deg(g)). It follows that the set I
of integers of the form 1− deg(f) is an ideal.
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(Indeed, 0 ∈ I (because the identity map has degree 1) and x, y ∈ I ⇒ (1− r)x+ ry ∈ I

for all r ∈ Z. If I contains an element y 6= 0, then ry ∈ I for all r ∈ Z. So I contains

a least positive element a. Any element of I can then be written as qa + b with q ∈ Z,

0 < b 6 a. So (1 − r)(qa) + r(qa + b) = qa + rb ∈ I for all r ∈ Z. We must have

qa+sb− b < 0 6 qa+sb for some integer s, and so 0 6 qa+sb < b 6 a. Hence qa+sb = 0

and b = qa+ (s+ 1)b ∈ I . By minimality, b = a.) �

Corollary 2.6. Let ξ be even-dimensional. If S(ξ) admits a section, then N(ξ) = 1
and hence S(ξ) has self-maps of all degrees.

Proof. Given a section s, the self-map taking the constant value s(x) in the fibre
at x ∈ X has degree 0. �

Proposition 2.7. (Some properties of N(ξ)).
(i). Suppose that ξ and η are two even-dimensional vector bundles over X. If ξ can
be embedded as a subbundle of η, then N(η) divides N(ξ).
(ii). The cohomology Euler class e(ξ) ∈ Hn(X ; Z(ξ)) with twisted integer coeffi-
cients is annihilated by N(ξ), that is, N(ξ) · e(ξ) = 0.
(iii). Suppose that ξ is a complex line bundle such that m · c1(ξ) = 0 ∈ H2(X ; Z)
for some m > 1. Then N(ξ) divides m.

It follows from (ii) that, if the rational Euler class of ξ is non-zero, then N(ξ) = 0.

Proof. (i). We can write S(η) = S(ξ) ∗X S(ξ⊥) as the fibrewise join of the sphere
bundles of ξ and its orthogonal complement ξ⊥ in η. A fibrewise self-map f of S(ξ)
gives a fibrewise self-map f ∗X 1 (the fibrewise join with the identity on S(ξ⊥)) of
S(η) with the same degree.

(ii). The homomorphism Hn(X ; Z(ξ)) → Hn(X ; Z(ξ)) induced by a self-map
f : S(ξ) → S(ξ) of degree d is multiplication by d and takes e(ξ) to itself. So
(1− d)e(ξ) = 0.

(iii). Choose an isomorphism ξ⊗(m+1) → ξ between ξ and its (m+1)-fold complex
tensor product. The (m + 1)th power map z 7→ z⊗(m+1) : S(ξ) → S(ξ⊗(m+1)) ∼=
S(ξ) has degree m+ 1. �

Lemma 2.8. Suppose that there exists a self-map S(ξ) → S(ξ) of degree 0. Then
the sphere bundle S(ξ) admits a section.

Proof. This is a standard nilpotence result. Suppose that f : E → E is a self-map
of a local trivially fibre bundle over X such that the restriction of f to the fibre
fx : Ex → Ex at x ∈ X is homotopic to a constant for every x. Then some power
of f is homotopic to a map that is constant in each fibre.

(Using the local contractibilty of X and compactness, one gets a finite open cover Ui,

i = 1, . . . , k, of X and maps fi homotopic to f such that fi is constant in the fibres over

each point of Ui. Then the kth power fk is homotopic to the composition f1 ◦ · · · ◦ fk,

which is constant in every fibre.) �

Example 2.9. Suppose that ξ1 and ξ2 are complex line bundles over X such that
m1 · c1(ξ1) = 0 and m2 · c1(ξ2) = 0, where m1 and m2 are coprime positive integers.
Then ξ = ξ1 ⊕ ξ2 is isomorphic to C⊕ (ξ1 ⊗ ξ2) as a complex bundle.

Proof. For N(ξ) divides N(ξi), which divides mi, for i = 1, 2. Hence, N(ξ) = 1
and so S(ξ) has a section. We conclude that ξ splits as the direct sum of a trivial
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line bundle C and a complex line bundle classified by its first Chern class c1(ξ) =
c1(ξ1) + c1(ξ2) = c1(ξ1 ⊗ ξ2). �

We look next at d-valued sections of a sphere bundle. (A different class of
multivalued sections is considered in [10, Section 5].)

Definition 2.10. Let ξ be an orthogonal real vector bundle over X . For an integer
d > 1, a d-valued section of the sphere bundle S(ξ) is a d-fold cover X̃ → X
embedded, fibrewise over X , in S(ξ).

Such a d-valued section determines, up to homotopy, a self-map of the sphere
bundle. To prepare for the proof, we recall a version of the Pontryagin-Thom
Umkehr construction introduced by McDuff in [12].

Let M be a connected, closed smooth manifold with tangent bundle τM . We
write (τM)+M for the fibrewise one-point compactification of τM ; its fibre at x ∈M
is the one-point compactification (τxM)+ of the tangent space τxM at x. It can
be identified by stereographic projection with the sphere bundle S(R⊕ τM) of the
direct sum R ⊕ τM of the tangent bundle and a trivial line bundle, so that the
point at infinity in a fibre corresponds to the ‘North Pole’ (1, 0):

v ∈ τxM 7→ (‖v‖
2

4 + 1)−1(‖v‖
2

4 − 1, v) ∈ S(R⊕ τxM).

Consider a finite subset N ⊆ M with cardinality #N = d. The restriction of
τM to N will be denoted by ν; it is the normal bundle of the inclusion of the
0-dimensional manifold N in M . With a suitably scaled Riemannian metric on
M we have a tubular neighbourhood D(ν) →֒ M embedding the closed unit disc
bundle of the normal bundle ν of N into M . So D(ν) is the union of d disjoint
closed discs D(νy), y ∈ N . Over D(ν) ⊆ M we can identify the restriction of τM
with the pullback of ν.

Construction 2.11. To the subset N , we associate a section sN of (τM)+M taking
the value ∞ (that is, sN (x) = ∞ ∈ (τxM)+) outside the open unit disc bundle B(ν)
and given on D(ν) by

sN (y, v) = [ψ(v)] ∈ ν+y = τ(y,v)M
+ for y ∈ N , v ∈ D(νy),

where ψ is the homeomorphism

D(νy)/S(νy) → ν+y : [v] 7→ v/(1− ‖v‖2)1/2.

We now look at the special case in which M is the sphere S(V ). The tangent
space τxS(V ) at x ∈ S(V ) = M is the orthogonal complement of Rx in V . The
direct sum R ⊕ τS(V ) is thus identified with the trivial bundle S(V ) × V (with
(1, 0) ∈ R ⊕ τxS(V ) corresponding to x ∈ V ), and so (τM)+M = S(R ⊕ τM) is
identified with the trivial sphere bundle S(V )×S(V ) → S(V ) (projecting onto the
first factor) in such a way that ∞ ∈ (τxS(V ))+S(V ) corresponds to (x, x).

The space of sections of the trivial bundle S(V ) × S(V ) → S(V ) is just the
space of self-maps S(V ) → S(V ). And so sN gives a map fN : S(V ) → S(V ). In
particular, if N is empty (and d = 0), this gives the identity map 1 : S(V ) → S(V ).

Lemma 2.12. The degree of fN is equal to 1− d.

Proof. For a general connected manifold M of dimension m, the homotopy classes
of sections s of the sphere bundle (τM)+M are classified by an integer deg(s) ∈ Z.
To avoid twisted coefficients, let us assume that M is oriented. The sections s
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are determinied by the difference class deg(s) = δ(s∅, s) ∈ Hm(M ; Z) = Z, the
obstruction to existence of a homotopy from the section s∅ taking the value ∞ in
each fibre to s. For the section sN , we have δ(s∅, sN ) = d (as in [12]).

When we specialize to M = S(V ), the section s∅ corresponds to the identity
map 1 = f∅ : S(V ) → S(V ) and for any map f : S(V ) → S(V ) the difference class
is equal to δ(1, f) = 1− deg(f) = deg(1)− deg(f) ∈ Z, which is the obstruction to
existence of a homotopy from 1 to f . Thus, d = 1− deg(fN ) as required.

This argument is described in a more general setting in Proposition 4.7. �

The construction that we have described is implicit in the arguments of [1, 2, 3],
although not there linked to the, now classical, construction given in [12].

Proposition 2.13. (Compare [3, Lemma 10]). Suppose that the sphere bundle
S(ξ) of an orthogonal real vector bundle ξ over X admits a d-valued section. Then
there exists a self-map S(ξ) → S(ξ) of fibre degree 1− d.

Proof. Since X is compact, for ǫ > 0 sufficiently small, the closed balls Dǫ(x̃)

of radius ǫ (in the Euclidean metric) centred at the points x̃ ∈ X̃ in any fibre
are disjoint. So the construction of fN for a finite set N can be carried through
fibrewise over X to produce a map fX̃ : S(ξ) → S(ξ) with fibre degree 1− d. �

Remark 2.14. When d = 2 we can write down explicitly a map f : S(ξ) → S(ξ) of
degree 1− 2 = −1 specified in each fibre by the (linear) reflection that interchanges

the two points of X̃ in the fibre.

Remark 2.15. When ξ is a complex line bundle, the cover X̃ → X determines a
section of the sphere bundle S(ξ⊗d) of the complex d-fold tensor power by taking
the product of the d elements in the fibre of ξ. The section trivializes the line
bundle ξ⊗d and so gives a self-map of degree 1− d as in Proposition 2.7(iii).

This is already enough to establish Theorem 1.1(a) when n is even.

Proof of Theorem 1.1(a) when n is even. For a prime p dividing #G, choose a point
x ∈ S(V ) such that the stabilizer Gx of x contains a Sylow p-subgroup of G. The

cardinality d of the orbit Gx is, thus, not divisible by p. Then X̃ = P ×G Gx ⊆
P ×G S(V ) = S(ξ) gives a d-valued section of S(ξ). By Proposition 2.13, S(ξ) has
a self-map of fibre degree 1− d. Hence N(ξ) divides d, which divides #G. Since p
does not divide d, it does not divide N(ξ).

Hence N(ξ) = 1, because N(ξ) divides #G and is not divisible by any prime p
dividing #G. Thus S(ξ) has a self-map of fibre degree 0 and so has a section, by
Lemma 2.8. �

Proposition 2.16. Suppose that G is an elementary abelian p-group of order ps,
s > 1, and V is a G-module such that V G = 0. Then there exists a principal
G-bundle P → X admitting no G-map P → S(V ).

Proof. It is enough to consider a representation V = Ck ⊗ (R[G]/R), where k > 1.
Take G = Cp × · · · × Cp, where Cp is the group of pth roots of unity in C acting
on P = S(Cm) × · · · × S(Cm) by (gi) · (vi) = (givi). For m sufficiently large the
Fp-Euler class e(ξ) ∈ Hn(X ; Fp) of the complex vector bundle ξ is non-zero. �

Remark 2.17. An argument using complexK-theory Euler classes, due to Munkholm
[14], shows similarly that, if G is cyclic of prime power order ps and V is a G-module
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such that V G = 0, then there exists a principal G-bundle P → X admitting no
G-map P → S(V ). The same result for any p-group G 1 can be established by using
the Euler class in stable cohomotopy and Carlsson’s verification of Segal’s Burnside
ring conjecture [6]. (In the notation of Section 4, the equivariant stable cohomo-
topy class γ(V ) ∈ ω0

G(∗; −V ) of V generates a free summand Zγ(V ), because its
image under the G-fixed-point map ω0

G(∗; −V ) → ω0(∗) = Z is 1. By the Segal
conjecture, there is a bundle P → X such that the Euler class γ(ξ) ∈ ω0(X ; −ξ),
corresponding to the image of γ(V ) in ω0

G(P ; −V ), is non-zero; the sphere bundle
S(ξ) → X has no section.)

To complete the proof of Theorem 1.1(a), we need a generalization of Proposition
2.13. We start by extending Construction 2.11.

Construction 2.18. Suppose that we are given a family h of pointed maps hx :
ν+x → ν+x for x ∈ N . To the subset N and family h, we associate a section sN,h

of (τM)+M taking the value ∞ outside the open unit disc bundle B(ν) and given on
D(ν) by

sN,h(y, v) = [hy(ψ(v))] ∈ ν+y = τ(y,v)M
+ for y ∈ N , v ∈ D(νy).

When M = S(V ) is a sphere, the section sN,h corresponds to a self-map fN,h :
S(V ) → S(V ), which (by the argument used to prove Lemma 2.12) has degree
1−

∑

y∈N deg hy.

Suppose that π : X̃ → X is a finite cover defining a d-valued section of S(ξ).

Then the fibre of π∗ξ at u ∈ X̃ splits as an orthogonal direct sum Ru ⊕ ηx and
π∗ξ is, thus, a direct sum R ⊕ η of a trivial line bundle and a real vector bundle
η of dimension n − 1. Suppose that the space X̃ is expressed as a disjoint union
of subspaces X̃γ , γ ∈ Γ such that the restriction X̃γ → X of π is a finite cover, of

order dγ say. (For example, the X̃γ might be the connected components of X̃ .)

Proposition 2.19. (Compare [2, Lemma 3.1]). In the notation introduced above,

suppose that h : S(η) → S(η) is a self-map of the sphere bundle S(η) over X̃ such

that, for each γ ∈ Γ, the restriction of h to X̃γ has constant fibre degree, mγ say.
Then S(ξ) admits a self-map of fibre degree

1−
∑

γ∈Γ

mγdγ .

Proof. The bundle map h : S(η) → S(η) extends radially to a map η+
X̃

→ η+
X̃
. Then

the construction of fN,h above can be performed fibrewise over X to produce the
required self-map fX̃,h of S(ξ) as in Proposition 2.13. �

Proof of Theorem 1.1(a) when n is odd. Consider a prime p dividing #G and a
Sylow p-subgroup H of G. Since S(V H) is an infinite set and G has only finitely
many subgroups, there exist two points x, y ∈ S(V H) such that Gx = Gy and
y /∈ {±x}. It is possible that Gx contains a Sylow p′-subgroup for some other
prime p′.

We can, therefore, choose finitely many points xγ , yγ , indexed by γ ∈ Γ, such
that: (i) xγ 6= ±yγ and Gxγ

= Gyγ
; (ii) for each prime p dividing #G at least one

of the subgroups Gxγ
contains a Sylow p-subgroup of G; (iii) if γ 6= δ, then the

subgroups Gxγ
and Gxδ

of G are not conjugate.

1I am grateful to Roman Karasev for pointing this out.
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Let X̃γ = P ×G Gxγ ⊆ P ×G S(V ) = S(ξ). Then X̃γ → X is a finite cover of

order dγ = #Gxγ . If γ 6= δ, the sets X̃γ and X̃δ are disjoint, because the stabilizers

Gxγ
and Gxδ

are not conjugate. Take X̃ =
⊔

γ∈Γ X̃γ . By construction, dγ divides
#G and for each prime p dividing #G there is some γ such that p does not divide
dγ . So there are integers mγ such that 1−

∑

γ mγdγ = 0.

Now yγ gives a section of S(π∗ξ) = S(R ⊕ η) over X̃γ : [a, gxγ ] 7→ [a, gyγ] for
a ∈ P, g ∈ G (well-defined, because Gxγ

= Gyγ
). Then, because gyγ 6= ±gxγ , the

η-component is non-zero and so determines a section of S(η) over X̃γ . Hence, there

is a map S(η) → S(η) with degree mγ over X̃γ . �

It is easy to write down a counterexample if the assumption that the dimension
of V H is greater than 1 is omitted.

Proposition 2.20. Let G be cyclic of order 6, generated by an element g, and
let A and B be the G-modules A = R, B = C with g acting as t 7→ −t, z 7→
e2πi/3z, respectively. Take V = A⊕B and let P be the 6-dimensional free G-space
S(R2 ⊗A)× S(R3 ⊗B). Then

(i). There is a G-map S(V ) → S(V ) with non-equivariant degree d if and only
if d ≡ ±1 (mod3).

(ii). There is no G-map P → S(V ).

Proof. (i). For the non-equivariant degree of a G-map is congruent (mod 3) to the
degree of its restriction S(R) → S(R) to the fixed subspace S(V H) of the cyclic
subgroup H of order 3. And we can realize a map of degree ±(3r + 1) by the join
of t 7→ ±t : S(R) → S(R) and z 7→ z3r+1 : S(C) → S(C).
(ii). Let α and β be the real 1- and 2-dimensional vector bundles over X = P/G =
S(R2⊗A)/〈g3〉×S(R3⊗B)/〈g2〉 associated with the modules A and B. So ξ = α⊕β.

Now, writing Z̃ for integer coefficients twisted by the Hopf line bundle over S1,
we have, for any compact ENR Y , an equivalence

Hi(S1 × Y ; Z̃) = Hi−1(Y ; F2), i ∈ Z,

given by reduction (mod 2) and the projection to the second factor

Hi(S1 × Y ; Z̃) → Hi(S1; F2) = Hi(Y ; F2)⊕Hi−1(Y ; F2) → Hi−1(Y ; F2).

(This is the classical statement that the real projective plane is a mod 2 Moore
space. Given the naturality, it is enough to check when Y is a point.)

There is only one non-orientable 2-dimensional real vector bundle overX , namely
R ⊕ α, because the group H2(X ; Z(α)) = H1(S(R3 ⊗ B)/〈g2〉; F2) that classifies
such bundles is zero. Since the Pontryagin class p1(β) ∈ H4(X ; Z) is non-zero, ξ is
not isomorphic to R⊕ (R⊕ α). �

Theorem 2.21. Suppose that for each prime p dividing #G the fixed subspace V H

of a Sylow p-subgroup H is non-zero and, if n is odd, of dimension greater than 1.
Then there exists a G-map S(V ) → S(V ) with non-equivariant degree equal to 0.

Proof. Indeed, since the definition of ρr, Definition 2.2, is equivariant with respect
to the action of the orthogonal group of V , for any even-dimensional G-module
V there is (as was already shown in [15]) a non-negative integer NG(V ) such that
there is a G-map S(V ) → S(V ) with non-equivariant degree 1−d if and only if d is
divisible by NG(V ). And then it follows from the equivariant version of Proposition
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2.13 that, if V H 6= 0 for a Sylow p-subgroup H , the prime p does not divide NG(V ).
Hence, if this holds for all primes, we must have NG(V ) = 1.

The proof when n is odd uses the equivariant version of Proposition 2.19. �

Proposition 2.22. Suppose that G is a p-group and that V G = 0. Then any
G-map S(V ) → S(V ) has non-equivariant degree congruent to 1 (mod p).

If n is even, then NG(V ) is divisible by p. If n is odd, p = 2.

Proof. In general, for the non-trivial p-group G, the degree of a G-map f : S(V ) →
S(V ) is congruent (mod p) to the degree of its restriction fG : S(V G) → S(V G) to
the fixed subspace. (See, for example, [11]. The map f has an equivariant degree
in the Burnside ring A(G) of G, the Grothendieck group of finite G-sets. And so
the assertion reduces to the fact that the cardinality of a finite G-set is congruent
(mod p) to the cardinality of the fixed subset.)

If n is odd, the map −1 : S(V ) → S(V ) has degree −1. �

Proposition 2.23. Suppose that G is a group of order 2ps, where p is an odd
prime, s > 1, and that V G = 0. Suppose further that for a Sylow p-subgroup H,
dimV H = 1. Then any G-map S(V ) → S(V ) has non-equivariant degree congruent
to ±1 (mod p).

If n is even, then NG(V ) is divisible by p.

Proof. Observe that H is a normal subgroup and the quotient group G/H acts on
V H as ±1. The degree of a G-map f : S(V ) → S(V ) is congruent (mod p) to the
degree of its restriction fH : S(V H) → S(V H). Since fH commutes with the action
of G/H , we must have fH = ±1.

When n is even, for each r ∈ Z there is a G-map S(V ) → S(V ) with degree
1− rNG(V ), and so the product rNG(V )(rNG(V )− 2) must be divisible by p. This
is only possible if p divides NG(V ). �

3. Symmetric groups

For a subset J ⊆ I = {1, . . . , q}, as in the Intrduction, we write eJ =
∑

i∈J ei ∈
R[I] and eJ ∈ L for its image in the quotient L = R[I]/ReI . Consider a prime
p 6 q and write q =

∑

r arp
r, where 0 6 ar < p. A Sylow p-subgroup H of Sq

determines a partition

I =

αp(q)
⊔

i=1

Ji

of I into αp(q) =
∑

r ar subsets each of order a power of p with ar of order pr. The
fixed subspace R[I]H has dimension αp(q) with the basis eJi

. So LH has dimension
αp(q)− 1 and is spanned by the eJi

subject to the single relation
∑

i eJi
= 0. The

order of a Sylow p-subgroup is the highest power, pνp(q!), of p that divides #Sq,
where the p-adic valuation νp(q!) of q! is equal to (q − αp(q))/(p− 1).

As in the statement of Corollary 1.2, we consider a principal Sq-bundle P → X
over a compact ENR and write λ for the (q−1)-dimensional vector bundle P ×Sq

L
over X . Let µ be some odd-dimensional Euclidean vector bundle over X .

Lemma 3.1. Suppose that p is a prime and that q is not a power of p. If q is odd,
then p does not divide N(λ); if q is even, then p does not divide N(λ⊕ µ).
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Proof. Choose a point v ∈ S(L) that is fixed by some Sylow p-subgroup or, equiv-
alently, so that its Sq-orbit D has size d which is not divisible by p.

For example, if ps is the highest power of p dividing q, we could take v = eJ/‖eJ‖,
where J ⊆ I has cardinality ps. Then D = {eK/‖eK‖ | K ⊆ I, #K = ps} and
d =

(

q
ps

)

.

Take X̃ = P ×Sq
D ⊆ P ×Sq

S(L) = S(λ) ⊆ S(λ ⊕ µ). By Proposition 2.13,
S(λ) and S(λ⊕ µ) admit self-maps of degree 1− d. So, if q is odd, N(λ) divides d,
and, if q is even, N(λ⊕ µ) divides d. �

Lemma 3.2. Suppose that q is a power q = ps, s > 1, of a prime p. If p is odd,
then N(λ) is either 1 or p; if p = 2, then N(λ⊕ µ) is either 1 or 2.

Proof. For we can take D = {eJ | #J = ps−1}. Then #D =
(

ps

ps−1

)

is divisible by

p but not p2. (For αp(p
s−1) + αp(p

s − ps−1)− αp(p
s) = p− 1.) �

Proposition 3.3. Suppose that q = ps is a prime power, s > 1, and k > 1. Then
there exists a principal Sq-bundle P → X admitting no Sq-map P → S(Rk ⊗ L).

Proof. Let G be an elementary abelian p-group of order ps. Fixing a bijection
I → G, we can identify G with a subgroup of Sq such that the restriction V of
R

k⊗L to G satisfies V G = 0. According to Proposition 2.16 there exists a principal
G-bundle Q such that there is no G-map Q → S(V ). Then there is no Sq-map
P = Q×G Sq → S(L). �

A similar argument to that in Proposition 2.20 shows that in Corollary 1.2 when
k = 1 and q is even some additional condition is essential.

Proposition 3.4. Take q = 2ps, where p > 2 is an odd prime and s > 1. Then
there exists a principal S2ps-bundle P → X such that there is no S2ps-map P →
S(L).

Proof. LetG = C2×H be the product of a cyclic group of order 2 and an elementary
abelian p-group H of order ps. Fix a bijection I → G to identify G with a subgroup
of S2ps and the restriction of L to G with

V = A⊕B ⊕ (A⊗B)

where A = R is the non-trivial C2-module with the generator acting as −1 and
B = R[H ]/R, of dimension ps − 1, is the reduced regular representation of H .

Taking H = Cp × · · · ×Cp (where again Cp is the group of pth roots of unity in
C), let R be the freeH-space S(Cm)×· · ·×S(Cm) with the action (hi)·(vi) = (hivi)
for m sufficiently large, say m = 2ps − 1. Let Q be the free G-space S(R2 ⊗A)×R
of dimension (2m− 1)s+ 1, and let α and β be the real line bundle and (ps − 1)-
dimensional real vector bundle over X = Q/G = S(R2 ⊗A)/C2 ×R/H associated
with the modules A and B respectively. We take P = Q ×G S2ps , so that over
X = P/S2ps

λ = α⊕ β ⊕ (α ⊗ β).

Suppose that η is a (2ps − 2)-dimensional non-orientable real vector bundle over
X = Q/G = S1 ×R/H . Now, as in the proof of Proposition 2.20, the group

H2(ps−1)(X ; Z(α)) = H2ps−3(R/H ; F2)

is trivial. So e(η) ∈ H2(ps−1)(X ; Z(α)) is zero. Recall that, for a real vector bundle
ξ of even dimension 2n, the nth Pontryagin class is equal to the square of the Euler



MULTIVALUED SECTIONS AND SELF-MAPS OF SPHERE BUNDLES 11

class: pn(ξ) = (−1)nc2n(C ⊗ ξ) = (−1)ne(C ⊗ ξ) = e(ξ ⊕ ξ) = e(ξ)2. (The sign
relates the orientations on C⊗ ξ and ξ⊕ ξ.) So pps−1(η) = e(η)2 ∈ H4(ps−1)(X ; Z)
is zero. But pps−1(λ) is non-zero, because

pps−1(β ⊕ β) = e(β ⊕ β)2 = e(β)4 6= 0,

by the choice of m. So λ cannot be isomorphic to R⊕ η.
There is, thus, no G-map Q→ S(V ) and no S2ps-map P → S(L). �

But it is shown in [2] that these (Propositions 3.3 and 3.4) are the only excep-
tional cases.

Theorem 3.5. ([2, Theorem 1.1]). Suppose that q is even, not a power of 2, and
not twice a power of an odd prime. Then, for any principal Sq-bundle P → X,
there exists an Sq-equivariant map P → S(L).

The first example is q = 12 = 23 + 22 = 32 + 31.

Proof. Let Γ denote the set of primes p 6 q and Γ2 ⊆ Γ the set of primes p 6 q
with αp(q) = 2.

For each prime p ∈ Γ, choose a partition I =
⊔

Ji as above into αp(q) subsets,
and let Gp be the subgroup of G = Sq that preserves each subset Ji: Gp =
∏

iSJi
6 SI .

If αp(q) > 2, we can choose two points xp and yp 6= ±xp in S(L), of the form
∑

i tieJi
, where ti 6= tj for i 6= j and

∑

i ti = 0, with stabilizer exactly Gp. Since
Gp contains a Sylow p-subgroup of Sq, the the order dp of the Sq-orbit of xp is not
divisible by p.

If αp(q) = 2, say q = ps + pt, where s > t we choose a single point xp with

stabilizer exactly Gp. Note that, in this case, dp = #(G/Gp) =
(

ps+pt

pt

)

is congruent

to 1 (mod p). (For (1+T )p
s+pt

= (1+T pt

)p
s−t+1 in Fp[T ].) Also, p divides dp′ for

p′ 6= p. (If r1+. . .+ra = ps+pt, where ri > 1, then νp((r1+. . .+ra)!/(r1! · · · ra!)) =
(αp(r1) + . . .+ αp(ra)− 2)/(p− 1).)

Notice that the G-orbits of the points xp are disjoint. We write X̃p = P ×GGxp
and X̃ =

⊔

p X̃p ⊆ S(λ). Following the notation of Proposition 2.19, we have a

vector bundle η over X̃ of even dimension q − 2. Let ηp be the restriction of η to

X̃p. Then N(ηp) = 1 if p /∈ Γ2, because yp gives a section of S(ηp), and N(ηp) = 1
or p if p ∈ Γ2, by Lemma 3.2.

Now, (following the argument in [2]) we notice that c = 1−
∑

p∈Γ dp is divisible

by each p ∈ Γ2. We can write 1 =
∑

p∈Γ npdp, and so 1 =
∑

p∈Γ(1 + cnp)dp =
∑

p∈Γmpdp, where mp = 1 + cnp is congruent to 1 (mod p) if p ∈ Γ2.
The proof is completed by applying Proposition 2.19. �

4. Euler classes and stable homotopy theory

Stable cohomotopy will be denoted by ω∗, and we make the abbreviation

ω0(X ; −ξ) = ω̃0(X−ξ)

for the reduced stable cohomotopy of the Thom spaceX−ξ of the virtual bundle −ξ.

Thus ω0(X ; −ξ) may be identified with the stable cohomotopy group ωN−n(Xξ⊥)
where ξ⊥ is the orthogonal complement of ξ included in a trivial bundle X×RN of
sufficiently high dimension N . Similar notation in cohomologyH∗ with integral co-
efficients would write H0(X ; −ξ), using the Thom isomorphism, for Hn(X ; Z(ξ)).
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The stable cohomotopy Euler class γ(ξ) ∈ ω0(X ; −ξ) of ξ is defined like the classi-
cal Euler class e(ξ) ∈ Hn(X ; Z(ξ)). Further details may be found, for example, in
[9, II, Section 4].

The stable cohomotopy Euler class

γ(ξ) ∈ ω0(X ; −ξ),

like e(ξ), is zero if the sphere bundle S(ξ) has a section. In a metastable range the
converse is true, by Freundenthal’s suspension theorem.

Proposition 4.1. Suppose that dimX < 2(dim ξ − 1). If γ(ξ) = 0, then S(ξ)
admits a section. �

The vanishing of the cohomology Euler class e(ξ) ∈ Hn(X ; Z(ξ)) is sufficient for
the existence of a section if dimX 6 dim ξ.

Proposition 4.2. (See, for example, [9, II, Lemma 12.45]). Suppose that π : X̃ →

X is a d-fold cover. If the pullback S(π∗ξ) → X̃ of the sphere bundle of ξ admits a
section, then

dkγ(ξ) = 0 ∈ ω0(X ; −ξ)

for k > 1 sufficiently large.

Proof. Since S(π∗ξ) admits a section, the stable cohomotopy Euler class π∗γ(ξ) =

γ(π∗ξ) ∈ ω0(X̃; −π∗ξ) is zero. Hence π!π
∗γ(ξ) = π!(1) γ(ξ) ∈ ω0(X ; −ξ) is zero,

where π! : ω
0(X̃) → ω0(X) is the transfer (or direct image) homomorphism. Now

π!(1) ∈ ω0(X) can be written as d− x where x is nilpotent. Thus dγ(ξ) = x · γ(ξ),
and dkγ(ξ) = xk · γ(ξ) is zero for large k. �

Remark 4.3. The same argument in cohomology rather than stable cohomotopy
shows that d · e(ξ) = 0 ∈ Hn(X ; Z(ξ)).

Remark 4.4. If X̃ → X is embedded in S(ξ), so defining a d-valued section, then
S(π∗ξ), as we observed in Section 2, clearly has a section.

Proposition 4.5. Suppose that S(ξ) has a self-map f of degree 1− d. Then

dkγ(ξ) = 0 ∈ ω0(X ; −ξ)

for k > 1 sufficiently large.

Proof. We have γ(ξ) = [f ] · γ(ξ), where [f ] ∈ ω0(X) is the class represented by f .
Now [f ] = 1− d+ x, where x is nilpotent. So the result follows as before. �

Corollary 4.6. If dim ξ is odd, then 2kγ(ξ) = 0 for k large.

Proof. The antipodal map −1 : S(ξ) → S(ξ) has degree −1. �

Proposition 4.7. If f is the map constructed in Propositions 2.13 and 2.19 from
a d-valued section of S(ξ) specified by a d-fold cover π : X̃ → X and fibrewise

embedding ι : X̃ →֒ S(ξ) over X and a map h : S(η) → S(η), then

[f ] = 1− π!([h]) ∈ ω0(X),

where [h] ∈ ω0(X̃) is the class represented by h.
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Proof. The section sX̃,h in Construction 2.18 realizes the fibrewise Umkehr homo-
morphism

ι! : ω
0(X̃) → ω0(S(ξ); −τXS(ξ)),

where τXS(ξ) is the fibrewise tangent bundle of S(ξ) → X . (See, for example, [9,
II, Chapter 3].) Thus, [sx̃,h] = ι!([h]). The projection π is the composition of ι and
the projection σ : S(ξ) → X . Hence, σ![sX̃,h] = π![h].

Recall that two sections s0, s1 of the pullback S(σ∗ξ) determine a difference
class δ(s0, s1) ∈ ω−1(S(ξ); −ξ) constructed as an obstruction to the existence of a
homotopy between the two sections.

The class

[sx̃,h] ∈ ω0(S(ξ); −τXS(ξ)) = ω−1(S(ξ); −ξ)

can be expressed as δ(s∅, sX̃,h), where s∅ is the section at ∞ of (τXS(ξ))
+
S(ξ) =

S(R⊕ τXS(ξ)). In the Gysin sequence

· · · → ω−1(S(ξ); −ξ)
δ
−→ ω0(X)

γ(ξ)·
−−−→ ω0(X ; −ξ) = ω0(D(ξ), S(ξ); −ξ) → · · ·

of the sphere bundle S(ξ), that is, the exact sequence of the pair (D(ξ), S(ξ)), the
coboundary δ coincides with the Umkehr map σ! and so maps the difference class
to σ![sX̃,h] = π![h].

Given any two self-maps f0, f1 : S(ξ) → S(ξ), the difference class δ(s0, s1) of
the corresponding sections s0 and s1 of S(σ∗ξ) maps, in the Gysin sequence, to
the difference γ(ξ, s0) − γ(ξ, s1) of the relative Euler classes γ(ξ, s0) and γ(ξ, s1)
in ω0(D(ξ), S(ξ); −ξ). (See [9, II, Lemma 4.12].) The relative Euler class γ(ξ, si)
is an obstruction to extending fi : S(ξ) → S(ξ) to a map D(ξ) → S(ξ) and
corresponds to [fi] ∈ ω0(X). Applying this to the self-maps f0 = 1 and f1 = f ,
which correspond, respectively, to the sections s∅ and sX̃,h, we obtain the required

identity 1− [f ] = π![h]. �

Thus far, the arguments have applied to a general vector bundle ξ over a compact
ENR X . We now specialize to the case that ξ = P ×G V as in the Introduction.

Corollary 4.8. Let p be a prime. Suppose that for a Sylow p-subgroup H 6 G the
fixed subspace V H is non-zero. Then the p-local Euler class γ(ξ) ∈ ω0(X ; −ξ)p) is
zero.

Proof. Take π : X̃ → X in Proposition 4.2 to be the covering projection P/H →
P/G with order d = #(G/H) prime to p. �

Corollary 4.9. Suppose that for each prime p dividing #G the fixed subspace V H

of a Sylow p-subgroup H of G is non-zero. Then the stable cohomotopy Euler class
γ(ξ) ∈ ω0(X ; −ξ) is zero.

Proof. Since, by Corollary 4.8, γ(ξ) vanishes at any prime p, we conclude that the
stable cohomotopy Euler class of ξ is zero. �

Corollary 4.10. Suppose that for each prime p dividing #G the fixed subspace V H

of a Sylow p-subgroup H of G is non-zero. If dimX < 2(n − 1), then the sphere
bundle S(ξ) → X has a section.

Proof. Since γ(ξ) = 0 ∈ ω0(X ; −ξ), by Corollary 4.9, the conclusion follows from
Proposition 4.1. �
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Proof of Theorem 1.1(b). If n is odd, γ(ξ) is 2-torsion, by Corollary 4.6. So it
enough to show that the 2-local Euler class in ω0(X ; −ξ)(2) is zero. �

Theorem 4.11. Let r > 1 be a positive integer such that dimX < 2(n − r) and
r < n. Suppose that, for each prime p dividing #G if n is even, for p = 2 if n is
odd and #G is even, the dimension of the fixed subspace V H of a Sylow p-subgroup
H of G is at least r. Then there exists a G-map

P → O(Rr, V )

to the Stiefel manifold of orthogonal r-frames in V .

Proof. In this range of dimensions the Stiefel bundle

O(Rr, ξ) = P ×G O(Rr, V ) → X

has a section if and only if the stable cohomotopy Euler class of the tensor product
η ⊗ ξ of the Hopf line bundle η over the real projective space P (Rr) of Rr with ξ,

γ(η ⊗ ξ) ∈ ω0(P (Rr)×X ; −η ⊗ ξ),

is zero. (See, for example, [7, Theorem 1.5].)

For a Sylow p-subgroup H of G, consider the finite cover π : X̃ = P/H → X =
P/G with order prime to p. The pullback π∗ξ has a trivial subbundle of dimension

r and S(η⊗ π∗ξ) has a section. So γ(η⊗ π∗ξ) ∈ ω0(P (Rr)× X̃; −η⊗ π∗ξ) is zero.
From Proposition 4.2 applied to η⊗ ξ, we deduce that γ(η⊗ ξ) is zero at the prime
(p). Hence, using Corollary 4.6 if n is odd, we conclude that γ(η ⊗ ξ) is zero. �

References

[1] S. Avvakumov and R. Karasev, Envy-free division using mapping degree. Mathematika 67

(2021), 36–53.
[2] S. Avvakumov and S. Kudrya, Vanishing of all equivariant obstructions and the mapping

degree. Discrete and Computational Geometry 66 (2021), 1202–1216.
[3] S. Avvakumov, R. Karasev and A. Skopenkov, Stronger counterexamples to the topological

Tverberg conjecture. arXiv math.AT 1907.11183 (2019).
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