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Abstract. We give two results for deducing dynamical properties of piecewise Möbius inter-

val maps from their related planar extensions. First, eventual expansivity and the existence
of an ergodic invariant probability measure equivalent to Lebesgue measure both follow from

mild finiteness conditions on the planar extension along with a new property “bounded non-

full range” used to relax traditional Markov conditions. Second, the “quilting” operation to
appropriately nearby planar systems, introduced by Kraaikamp and co-authors, can be used

to prove several key dynamical properties of a piecewise Möbius interval map. As a proof

of concept, we apply these results to recover known results on the well-studied Nakada α-
continued fractions; we obtain similar results for interval maps derived from an infinite family

of non-commensurable Fuchsian groups.
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1. Introduction

For much of the technical vocabulary mentioned here, see § 2 Background.

1.1. Historical overview. Metric number theory can be said to have begun with Gauss’s
discovery of the invariant measure for the regular continued fraction map. The map, defined on
[0, 1], fixes x = 0 and for all nonzero x is given by f : x 7→ 1/x − ⌊1/x⌋ where ⌊·⌋ denotes the
floor or nearest integer function. In a letter to Laplace in 1812, Gauss stated what in modern
terms is that the measure given by dx/(ln 2 (1 + x) ) is invariant under f . He did not, however,
state how he found this measure.

Regular continued fractions appear in various settings in mathematics. For instance, in 1924
E. Artin used them to show that the existence of unit tangent vectors of the modular surface
whose orbit under the geodesic flow is dense in the unit tangent bundle. In 1935, Hedlund used
the connection to regular continued fractions to prove that the geodesic flow on the modular
surface is ergodic with respect to the natural measure is “metrically transitive”, a property
which implies ergodicity. The following year, E. Hopf showed that the geodesic flow on the unit
tangent bundle of any hyperbolic surface of finite volume is ergodic.

In fact, this last result can be used to show the ergodicity of the invariant measure for the
regular continued fraction map and even determine the measure beforehand. In works of Adler-
Flatto in the 1980s and 1990s and of C. Series in 1991, it is shown that one can find a cross
section for the geodesic flow on the unit tangent bundle of the modular surface — thus a subset
of the unit tangent bundle which every flow line meets transversely — and then show that the
dynamical system of the first return map to this cross section by the flow is an extension of the
regular continued fraction system.

In 1977, Nakada, Ito and Tanaka [NIT] gave a more elementary presentation of an extension
of the regular continued fraction system. They considered the map T on the unit square defined
by T (x, y) = ( 1/x − ⌊1/x⌋, 1/(y + ⌊1/x⌋) ). Since the values ⌊1/x⌋ are locally constant, using
the Jacobian determinant of T one easily shows that the measure µ given by (1+xy)−2 dx dy is
T -invariant. The marginal measure ν of this is the measure on [0, 1] given by assigning to any
Borel set E the value of µ on the subset of the square fibering over E. Here one easily finds
Gauss’s measure, up to the normalizing constant. Nakada, Ito and Tanaka showed that the
system of T gives the natural extension of the regular continued fraction map. (Keane [Ke] has
suggested that Gauss may have found his invariant measure by use of a closely related system.)

In 1981, Nakada [N] introduced his α-continued fractions, which form a one dimensional
family of interval maps, Tα with α ∈ [0, 1]. (In fact, T1 is the Gauss continued fraction map,
and T1/2 is the “nearest-integer continued fraction” map.) Using planar natural extensions, he
gave the Kolmogorov–Sinai measure theoretic entropy — hereafter simply entropy, for those
maps corresponding to α ∈ [1/2, 1]. In 1991, Kraaikamp gave a more direct calculation of these
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entropy values by using his S-expansions, based upon inducing past subsets of the planar natural
extension of the regular continued fraction map given in [NIT].

Let h(Tα) denote the entropy of Tα. In 2008 Nakada and Natsui [NN] gave explicit intervals
on which α 7→ h(Tα) is respectively constant, increasing, decreasing. Indeed, they showed this

by exhibiting intervals of α such that T k
α(α) = T k′

α (α− 1) for pairs of positive integers (k, k′) —
such intervals are now known as matching intervals — and showed that the function α 7→ h(Tα)
is constant (resp. increasing, decreasing) on such an interval if k = k′ (resp. k > k′, k < k′).
That same year, Luzzi and Marmi [LM] strongly suggested that α 7→ h(Tα) is a continuous
function of α. They also asked if every Tα is the factor of some cross section to the geodesic
flow on the unit tangent bundle of the modular surface. The continuity was proven in 2012 by
both C. Carminati and G. Tiozzo [CT] and [KSS]. This latter paper used explicit constructions
of planar natural extensions. A presumably necessary commonality of the two papers was the
description of the complement of the set of all matching intervals, called the exceptional set. The
question of Luzzi-Marmi was answered affirmatively in [AS], using what they called “Arnoux’s
transversal” to find the cross sections.

Many generalizations of regular continued fractions have been studied. Katok-Ugarcovici [KU]
introduced the family of (a, b)-continued fraction maps and determined the full subset of its two-
dimensional parameter set for which matching occurs; see also [CIT, KU2]. These continued
fractions are also associated to the modular group. To each of the triangle Fuchsian groups
known as the Hecke groups, [DKS] associated a one-parameter family of continued fraction
maps and began the study of their entropy functions; see also [KSSm].

1.2. Specific motivation, Two main results. We call on the two main results of this paper
in [CKS2]. In [CKS], we studied a one parameter family of piecewise Möbius interval maps for
each of a countably infinite number of triangle Fuchsian groups. Although planar extensions are
barely mentioned there, our paper was informed by numerous calculations of them. As opposed
to say the Nakada α-continued fractions, infinitely many of the maps considered in [CKS] are
not expansive maps. A direct proof that each is eventually expansive seems tedious at best; this
motivated us to seek a general result that can be easily applied to deduce eventual expansivity.
We give such a result here as part of Theorem 3.6.

One expects sufficiently nice continued fraction maps to be ergodic with respect to some
measure which is absolutely continuous with respect to Lebesgue measure; the easiest setting
to prove such results is when a Markov condition is fulfilled. In the setting of [CKS], and in
many cases of continued fraction-like maps, Markov properties do not hold. In Definition 3.3
below, we introduce a property that is often fulfilled in these settings. That this property and
basic finiteness conditions satisfied by a planar extension for a map then imply ergodicity and
more is also given in Theorem 3.6. As an application, in § 3.6 we show that each of an infinite
collection of maps is ergodic.

We also study a technique used to date for solving for the planar extension of a piecewise
Möbius interval map beginning with such a planar extension for a sufficiently “nearby” map.
This technique, called quilting, was introduced in [KSSm], and has its roots in the discussion of
the two-dimensional interpretation of “insertion” and “deletion” in the Ph.D. dissertation [Kr].
Theorem 4.3 shows that one can use quilting to prove that fundamental dynamical properties
are shared between appropriately nearby systems. We give applications of this in the setting of
“matching intervals” in § 4.4.

One can thus pass from a system, say proven to have properties by use of Theorem 3.6, to
nearby systems and deduce that they also enjoy these properties. In § 5 we show that this
approach gives an alternate path to proving properties of the well-studied Nakada α-continued
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fractions. While pursuing this path, we discovered what seems to be an unnoticed symmetry
within the planar natural extensions of these maps, see the introductory paragraph of § 5.2.2
for more on this symmetry.

Convention Throughout, we will allow ourselves the minor abuse of using adjectives such as
injective, surjective and bijective to mean in each case up to measure zero, and thus similarly
where we speak of disjointness and the like we again will assume the meaning being taken to
include the proviso “up to measure zero” whenever reasonable.

1.3. Outline. In § 2 we introduce basic terminology, notation and results from dynamical sys-
tems and ergodic theory; review the settings for our examples and illustrative applications; and
summarize further background material for Propositions 4.8 and 4.9, which extend the second
main result. § 3 states and proves our first main result, Theorem 3.6, and gives an application.
§ 4 states and proves our second main result, Theorem 4.3, and related results. § 5 gives an
application of our results in the setting of the Nakada α-continued fractions. Whereas the use
of our main results are straightforward, here the setting is admittedly technical. We hope the
reader will enjoy the rich details.

1.4. Thanks. It is a real pleasure to thank the referee for strongly recommending a clearer
presentation, for mathematically helpful comments, and for additions to the bibliography.

2. Background

We collect standard background material in the §§ 2.1, 2.2 and 2.4; most of this material can
be found in various textbooks, such as [DK, EW, Ka, KH, P]. For a different perspective on
matters of § 2.2, see various works of P. Kůrka, such as the text [Ků] the joint work [KK]. In
§ 2.3 we recall various results about Nakada’s α-continued fractions, both to illustrate the prior
material and to use for motivation and application of the results of this paper. With the same
ends, we give brief summaries of further results from the literature in the remaining portion of
this section.

2.1. Basics of dynamical systems. A dynamical system is any (X,T,B, µ) where X is a
topological space X, T : X → X is a function, B a sigma algebra, and µ a T -invariant measure
on B. (In all that follows, we consider only Borel sigma algebras, unless stated otherwise.)
A dynamical system (X,T,B, µ) is an extension of (Y, S,B′, ν) if there is a measurable map
π : X → Y such that there are sets of full measure Y ′ ⊂ Y and X ′ ⊂ X such that S(Y ′) ⊂ Y ′

and T (X ′) ⊂ X ′ and a measurable surjective map π : X ′ → Y ′ such that π ◦ T = S ◦ π and
µ ◦ π−1 = ν. We also say that the second system is a factor of the first. The natural extension
of a dynamical system was introduced by Rohlin, and defined by means of an inverse limit. It is
a minimal invertible extension in the sense that any invertible system which is an extension of
(Y, S,B′, ν) is also an extension of it. Naturally enough, the natural extension of a dynamical
system is only well defined up to isomorphism; we will be most interested in planar extensions
which give natural extensions, see § 2.2.

The Kolmogorov–Sinai measure theoretic entropy, which as stated above we refer to simply
as entropy and usually denote in the form h(T ) — is an invariant of a dynamic system, which
roughly speaking measures its complexity. In fact, Rohlin introduced the notion of the natural
extension system to aid in the study of entropy and showed that the original system and its
natural extension share entropy values.

For a dynamical system (X,T,B, µ) of finite measure and a subset E ⊂ X of positive measure,
the induced transformation on E is TE : E → E given by TE(x) = T k(x) where k ∈ N is minimal
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such that T k(x) ∈ E. (By the Poincaré Recurrence Theorem, the set of x ∈ E such that there
is some such k has full measure in E, and in fact one defines TE to be the identity on the
complement of this subset.) We set µE to be the restriction to E of µ scaled by 1/µ(E). This
allows one to define a dynamical system for TE . The following is a key tool in the study of
planar extensions. Abramov’s Formula states that the entropy of the induced system on E is
the quotient of the entropy of the original system divided by the measure of E, in short

(1) h(TE) = h(T )/µ(E).

One also has Rohlin’s Entropy Formula for an interval map T : I → I which is ergodic with
respect to an invariant probability measure ν and such that the derivative T ′ exists ν-almost
everywhere,

(2) h(T ) =

∫
I
ln |T ′(x) | dν.

2.2. Piecewise Möbius maps, cylinders, planar extensions. The group GL(2,R) of in-
vertible integral 2× 2 matrices acts by way of Möbius transformations on the Riemann sphere,
that is on the set of complex numbers union a point denoted ∞. To wit, for

(3) M =

(
a b
c d

)
in GL(2,R) and z ∈ C, one has M ·z = az+b

cz+d . We use mainly the restriction of this action to the
real numbers. Note that the action is projective in the sense that we can and do restrict to the
case of detM = ±1. Those M of determinant equal to 1 form SL(2,R). Taking the quotient by
its center {±I}, we obtain the group PSL(2,R).

The following notation is perhaps slightly inelegant, but we will find it useful. Let SL±1
2 (R)

denote the subgroup of GL2(R) comprised of those elements whose determinant is 1 or −1, and
let PSL±1

2 (R) be its quotient by {±I}. Then, PSL±1
2 (R) contains PSL2(R) as a subgroup of

index two. It is a standard abuse to represent an element [M ] = ±M ∈ PSL±1
2 (R) simply by

M ∈ SL±1
2 (R).

A piecewise Möbius interval map is a function T on a subinterval I ⊂ R with values in I such
that there is a partition I = ∪β∈BKβ with T (x) = Mβ · x for all x ∈ Kβ . We will assume
that each Kβ is an interval and is taken as large as possible. We call these Kβ the (rank one)
cylinders for T . Similarly, a cylinder of rank m > 1 is the largest interval on which Tm is given
by the action of some Mβm

· · ·Mβ1
. We say that the cylinder Kβ is full if T (Kβ) = I. Naturally

enough, any cylinder which is not full is called non-full.
The standard number theoretic planar map associated to a Möbius transformation M is

TM (x, y) :=

(
M · x,RMR−1 · y

)
for x ∈ R \ {M−1 · ∞}, y ∈ R \ {(RMR−1)−1 · ∞} ,

where

(4) R =

(
0 −1
1 0

)
.

Thus, TM (x, y) = (M · x,−1/(M · (−1/y)) ). As mentioned in the introduction, an elementary
Jacobian matrix calculation verifies that the measure µ on R2 given by

(5) dµ =
dx dy

(1 + xy)2

is (locally) TM -invariant.
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For a piecewise Möbius interval map T we then set

(6) T (x, y) = TMβ
(x, y) whenever x ∈ Kβ , y ∈ R \ {N−1 · ∞} .

Suppose that Ω ⊂ R2 projects onto the interval I and is a domain of bijectivity of T , that is
T is bijective on Ω up to µ-measure zero. Let B be the Borel algebra of Ω, we then call the
system (T ,Ω,B, µ) a planar extension for T . We will occasionally abuse this terminology and
say that Ω or T is the planar extension. Similarly, we will make occasional use of the words T
is of positive planar extension to mean that T has a planar extension with 0 < µ(Ω) <∞.

We will have occasional need to use a planar extension of T for which the invariant measure
is Lebesgue measure. Let

(7) Z(x, y) = (x, y/(1 + xy))

and for each M =

(
a b
c d

)
as above, let T̂M = Z ◦ TM ◦ Z−1. Then

(8) T̂M (x, y) = (M · x, detM( (cx+ d)2y − c(cx+ d) ) ).

We claim that Lebesgue measure is T̂M -invariant. The derivative with respect to x of x 7→M ·x
equals detM/(cx+d)2. This also equals the multiplicative inverse of the partial derivative with
respect to y of detM ((cx+d)2y− c(cx+d) ). An elementary Jacobian matrix calculation hence

verifies that Lebesgue measure on R2 is (locally) T̂M -invariant. See Figure 2 for an indication
of the effect of Z.

Suppose that some T with its planar natural extension (T ,Ω,B, µ) is given. We let T̂ (x, y) =

Z ◦ T ◦ Z−1, thus T̂ is given piecewise by various T̂M on the domain of bijectivity Σ = Z(Ω).
We call the corresponding dynamical system the Lebesgue planar extension of T . See Figure 2
for a view of both types of planar extensions for a particular map.

2.3. Nakada’s α-continued fractions. The Nakada α-continued fractions form a one-parameter
family of piecewise Möbius interval maps.

For α ∈ [0, 1], we let Iα := [α− 1, α]. Then Nakada’s α-continued fraction map is defined as
Tα : Iα → [α− 1, α) by

Tα(x) :=

∣∣∣∣ 1x
∣∣∣∣− ⌊ ∣∣∣∣ 1x

∣∣∣∣+ 1− α

⌋
(x ̸= 0),

Tα(0) := 0. For x ∈ Iα, put

ε(x) :=

{
+1 if x ≥ 0 ,
−1 if x < 0 ,

and dα(x) :=

⌊∣∣∣∣ 1x
∣∣∣∣+ 1− α

⌋
,

with dα(0) = ∞.
The cylinder ∆α(ε, d) is the set of x such that (ε(x), dα(x) ) = (ε, d). Let

M(ε:d) =

(
−d ε
1 0

)
,

so that Tα(x) = M(ε:d) · x on ∆α(ε, d). (We will usually ignore the exceptional cylinder
∆α(+1,∞) which contains only x = 0.) Note that the only endpoints of any cylinder which
Tα could possibly send to an interior point of Iα are α − 1 or α. Thus, of the infinitely many
cylinders at most two cylinders, those of α− 1 or α, can be non-full. Furthermore, the fullness
or non-fullness of each of these two depends only on the image of α − 1 or α, respectively. See
Figure 1.

Furthermore, let

εn = εα,n(x) := ε(Tn−1
α (x)) and dn = dα,n(x) := dα(T

n−1
α (x)) (n ≥ 1).
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Figure 1. Approximate graph of Nakada’s T0.39. (Aspect ratio of the plot
unequal to 1 for aesthetic reasons only.) Each cylinder corresponds to a branch
of the graph. Notice that the two extreme cylinders are not full; for each, this
is due to exactly one endpoint of the cylinder having image in the interior of
the interval of definition. See Figure 8 for the planar extension of this function.

This yields the α-continued fraction expansion of x ∈ R :

x = d0 +
ε1

d1 +
ε2

d2 + · · ·
,

where d0 ∈ Z is such that x − d0 ∈ [α− 1, α). Note that when α = 0 this recovers the regular
continued fractions, as mentioned in the introduction. The collection of all finite words in the
(ε : d) which arise in the expansions of any x ∈ Iα form the language Lα for Tα; any word in Lα

is called α-admissible.
Also as indicated in the introduction, a matching interval of parameter α values is an interval

such that T k
α(α) = T k′

α (α− 1) for pairs of positive integers (k, k′) for all α in the interval. Both
[CT] and [KSS] established that the complement in [0, 1] of the union of the matching intervals
is a set of measure zero. This complement is the exceptional set, denoted E .

For ε and d as above, let N(ε:d) =

(
0 1
ε d

)
. Note that projectively, N(ε:d) = (M−1

(ε:d))
t =

RM(ε:d)R
−1. Define T(ε:d) to be the map (x, y) 7→ (M(ε:d) · x,N(ε:d) · y). Thus for x ∈ ∆α(ε : d)

and any y we have Tα(x, y) = T(ε:d)(x, y) in accordance with (6).

2.4. Modular group and surface, geodesic flow, Fuchsian groups. The upper half-plane
is H = {z = x + iy |x, y ∈ R, y > 0} as a subset of the complex numbers. The Möbius
action of the group SL(2,R) preserves H. Indeed its elements act as isometries when we place
the hyperbolic metric on H, whose element of arclength squares to be ds2 = (dx2 + dy2)/y2.
The geodesics of H are either vertical lines and semi-circles, whose naive extensions meet the
boundary real line perpendicularly.

For simplicity, let us say that a unit tangent vector on H is u = (z, θ) where z ∈ H and θ
denotes a direction. There is a unique hyperbolic geodesic passing through z with tangent line
of the given direction. The collection of all of the unit tangent vectors is called the unit tangent
bundle, T 1H. One can extend the action of SL2(R) on H to an action on T 1H. The action is
transitive and the stabilizer of the vertical unit tangent vector of basepoint z = i is ±I; this
allows one to identify T 1H with PSL2(R).
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The geodesic flow on the unit tangent bundle is an action of the real numbers: given a
nonnegative real number t and a unit tangent vector u, the unit tangent vector t · u is obtained
by following the unique geodesic passing through u in the positive direction for arclength t and
taking the unit tangent vector to this oriented geodesic at the new basepoint. If t < 0, we follow
the geodesic in the opposite direction. In terms of PSL2(R), the geodesic flow for time t is given

by sending A ∈ PSL2(R) to Agt, where gt =
(
et/2 0
0 e−t/2

)
.

A Fuchsian group Γ is a discrete (with respect to the natural topology) subgroup of PSL(2,R)
and in particular, it is a subgroup acting properly discontinuously on H; the quotient Γ\H is a
surface (or orbifold) and inherits a hyperbolic metric.

The quotient Γ\H has a unit tangent bundle, given by equivalence classes (thus Γ-orbits) of
unit tangent vectors of H. The geodesic flow descends so that for t ∈ R, [A] ∈ Γ\PSL2(R) is
sent to [Agt], where the square brackets here denote Γ-cosets represented by the given elements.

The modular group is PSL(2,Z). The modular surface is Γ\H with Γ = PSL(2,Z). The
modular group is in particular a triangle Fuchsian group, of finite covolume. The signature of
this Fuchsian group is (0; 2, 3,∞), indicating that the modular surface is of genus zero and has
quotient singularities of orders 2 and 3, and has a cusp: the modular surface is a punctured
sphere with the puncture being at infinite hyperbolic distance from the other points.

2.5. Arnoux’s method for cross sections to a geodesic flow. The following material is
called upon in § 4.3.

2.5.1. Cross sections to a measurable flow, Arnoux’s transversal. Let (X,B, µ) be a measure
space and Φt a measure preserving flow on X, that is Φ : X × R → X is a measurable function
such that for Φt(x) = Φ(x, t), Φs+t = Φs ◦ Φt. Then Σ ⊂ X is a measurable cross section for
the flow Φt if: (1) the flow orbit of almost every point meets Σ; (2) for almost every x ∈ X the
set of times t such that Φt(x) ∈ Σ is a discrete subset of R; (3) for every Borel subset (in the
subspace topology) A ⊂ Σ and for every τ > 0, flow box A[0,τ ] := {Φt(A) | A ∈ Σ, t ∈ [0, τ ] }
is µ-measurable.

The return-time function r = rΣ is r(x) = inf{t > 0 : Φt(x) ∈ Σ} and the return map
R : Σ → Σ is defined by R(x) = Φr(x)(x). The induced measure µΣ on Σ is defined from flow

boxes: one sets µΣ(A) =
1
τ µ(A[0,τ ]) for any 0 < τ < infx∈A{r(x)}.

Convention: In all that follows, we write cross section to denote measurable cross-section.

A flow Φt is ergodic if for any invariant set either it or its complement is of measure zero.
The result of Hopf mentioned in the introduction states that if a Fuchsian group Γ is of finite
covolume, then the geodesic flow is ergodic with respect to the natural measure on the unit
tangent bundle of Γ\H; see his reprisal in [Ho]. A flow is recurrent if the Φ-orbit of almost every
point meets any positive measure set infinitely often. By the Poincaré Recurrence Theorem, an
ergodic flow on a finite measure space is recurrent. Given a cross-section, a first return-time
transformation (Σ,BΣ, µΣ, RΣ) is ergodic whenever the flow is.

There is a natural measure on the unit tangent bundle T 1H: the Liouville measure is given
as the product of the hyperbolic area measure on H with the length measure on the circle of
unit vectors at any point. Liouville measure is (left- and right-) SL2(R)-invariant, and thus
gives Haar measure on G. In particular, this measure is invariant for the geodesic flow. With
standard normalizations, Liouville measure agrees with the Riemannian volume form. These
both descend modulo any Fuchsian group Γ. For example, the volume of the unit tangent
bundle of the modular surface is π2/3.

Arnoux, see say [AS], found an elementary manner to map Lebesgue planar extensions into
the unit tangent bundle of appropriate surfaces so as to find cross sections to the geodesic flow.
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This often allows one to express an original interval map’s system as a factor. For (x, y) ∈ R2,
let

A(x, y) =

(
x xy − 1
1 y

)
.

Arnoux’s transversal, A , is the projection to PSL2(R) of the set of all A(x, y). The complement
to {[Agt] |A ∈ A , t ∈ R} is a null set for Liouville measure. Furthermore Liouville measure
restricts to A to be a constant multiple of dx dy dt.

Given M ∈ SL±1
2 (R) of the form (3), let τ(M,x) = 2 ln |cx + d| for any x ̸= −d/c (if

c ̸= 0). The function τ(M,x) descends to be independent of representative M for an element of
PSL±1

2 (R). In what follows, we choose the representative M such that |cx + d| = cx + d. For

ease of legibility, set t0 = τ(M,x), A = A(x, y) and A′ = A( T̂M (x, y) ). Then

(9) MAgt0 =


A′ if detM = 1;

A′ U if detM = −1,

where U =

(
1 0
0 −1

)
.

Given a Fuchsian group Γ, we have the function

P = PΓ : R2 → Γ\PSL(2,R)
(x, y) 7→ [A(x, y)],

where again square brackets denote cosets. Note that this is measure preserving when we use
Lebesgue measure on R2 and the measure given by dx dy inherited by the projection AΓ, of A
to Γ\PSL(2,R). When we use P we will often commit the abuse of writing A to represent the
corresponding coset.

2.5.2. Arnoux’s method in the determinant one setting. Now suppose that T is a piecewise

Möbius interval map. We say that the group associated to T is the group Γ̂T generated by the

Möbius transformations of T ; thus, Γ̂T = ⟨Mβ , β ∈ B⟩ ⊂ PSL±1
2 (R). We let ΓT = Γ̂T ∩PSL2(R),

this is a subgroup of index wT ∈ {1, 2}. In particular, if detMβ = 1 for all β, then wT = 1; we
call this the determinant one setting.

If T has a positive planar extension, we conjugate via Z to the Lebesgue planar extension of
T . We then apply the measure preserving P, with Γ = ΓT , to Z(Ω). When ΓT is a Fuchsian
group, this is a subset of T 1(ΓT \H); using the fact that any Fuchsian group has countably many
elements, in [AS2] it is shown that P is injective up to measure zero on Z(Ω).

Arnoux’s method in the determinant one setting is illustrated by the following result. When T
is a piecewise Möbius interval map and x ∈ I, we let τ(x) = τT (x) = τ(M,x) where T (x) =M ·x.
The result here combines ([AS2] Theorem 5.4, Corollary 1, and Proposition 4).

Theorem 2.1. [Arnoux’s Method] Let T be a piecewise Möbius interval map with positive planar

extension, that each of Möbius transformations giving T is of determinant one, so Γ̂T = ΓT and
that this is Fuchsian group of finite covolume. Then

Σ = PΓ(Z(Ω) )

is a cross section to the geodesic flow on T 1(ΓT \H). Furthermore, the system defined by

ϕ : Σ → Σ

[A(x, y)] 7→ [MA(x, y)gτ(x)],
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with M such that T (x) = M · x, is an extension of T : I → I. Moreover, ϕ agrees with the first
return map of the geodesic flow to Σ if and only if T is ergodic, eventually expansive, and with
entropy satisfying h(T )µ(Ωf ) = vol(T 1(ΓT \H) ). When this holds, the first return to Σ gives a
natural extension to T .

The initial statement of the theorem is shown by considering (9) with the projection. The
subset {[A(x, y)gt] |A(x, y) ∈ Σ, 0 ≤ t ≤ τ(x)} ⊂ T 1(ΓT \H) is invariant under the geodesic
flow; Hopf’s result implies that this is all of T 1(ΓT \H) up to measure zero. If ϕ agrees with
the first return map, then the map to A is such that the flow is expansive in the x-direction
and contracting in the y-direction — recall that the map of (8) preserves Lebesque measure —
and one can argue as in [AS2] that the first return system is indeed the natural extension. The

ergodicity of the flow implies that ϕ is ergodic, it then follows that T̂ , T and hence T itself are
ergodic. The veracity of the equation involving the entropy is also in [AS2]; in brief, τ(x) is
simultaneously the arclength of the geodesic path following the flow line from [A(x, y)] to its
image under ϕ and the (piecewise form of the) integrand in Rohlin’s formula (2). Recall that ν
is the marginal measure of µ on Ω, and that both Z and PΓ are measure preserving.

In fact, even if ϕ is not given by the first return map, if T is ergodic we can use Rohlin’s
formula and find that h(T )µ(Ωf ) ≥ vol(T 1(ΓT \H) ). Strict inequality holds exactly when there
is a positive measure set of points in Σ whose flow paths return to first agree with ϕ only for
some nth return with n > 1.

2.5.3. Arnoux’s method in the mixed determinant setting. One can extend the above results to
the setting where not all M =Mβ are of determinant one.

Let Σ+ = PΓ(Z(Ω) ), thus equalling Σ as above. Fix D ∈ SL±1
2 (R) of determinant −1,

then let Σ− = {[DAU ] |A = A(x, y) ∈ A with (x, y) ∈ Z(Ω)}. Since Haar measure is both left-
and right-multiplication invariant, we may and do assume that Σ− has the Lebesgue measure
in terms of x, y.

As usual, assume that T (x) =M · x. We define maps under the restriction that detM = 1

αM : Σ+ → Σ+ and βM : Σ− → Σ−

[A(x, y)] 7→ [MA(x, y)gτ(x)] [DA(x, y)U ] 7→ [DMA(x, y)gτ(x)U ] .

When detM = −1 we define maps

γM : Σ+ → Σ− and δM : Σ− → Σ+

[A(x, y)] 7→ [DMA(x, y)gτ(x)] [DA(x, y)U ] 7→ [MA(x, y)Ugτ(x)] .

That these maps then do take values in the set indicated follows from considering (9) with the
projection PΓ, and the facts that the diagonal matrices U and gt commute and finally that U2

is the identity. Note that DMA(x, y)gτ(x)U = DMD−1DA(x, y)U gτ(x), thus βM is given by
left multiplication by a determinant one matrix and a right multiplication by a determinant one
diagonal matrix. Similarly, the left multiplying matrices for the maps γM and δM are DM and
MD−1, respectively.

Theorem 2.2. [Arnoux’s Method, 2] Let T be a piecewise Möbius interval map with positive

planar extension, with ΓT a Fuchsian group of finite covolume and ΓT ̸= Γ̂T . Suppose D ∈
PSL±1(Z) is such that (1) Σ+ ∩ Σ− is a null set; (2) ∀M ∈ ΓT also DMD−1 ∈ ΓT ; and, (3)

∀M ∈ Γ̂T \ ΓT one has DM ∈ ΓT . Then Σ = Σ+ ∪ Σ− is a cross section to the geodesic flow
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on T 1(ΓT \H). Furthermore, the system defined by

ψ : Σ → Σ

σ = σ(x, y) 7→


αM (σ) if σ ∈ Σ+ and detM = 1;

βM (σ) if σ ∈ Σ− and detM = 1;

δM (σ) if σ ∈ Σ+ and detM = −1;

γM (σ) if σ ∈ Σ− and detM = −1,

with M such that T (x) =M · x, is an extension of T : I → I. Moreover, ψ agrees with the first
return map of the geodesic flow to Σ if and only if T is ergodic, eventually expansive, and has
entropy satisfying 2h(T )µ(ΩT ) = vol(T 1(ΓT \H) ). When this holds, the planar system T on ΩT

gives a natural extension to T .

The following is the main result of [AS].

Theorem 2.3. For any α ∈ (0, 1] the Nakada α-continued fraction map Tα is a factor of a first
return system of the geodesic flow on the unit tangent bundle of the modular surface.

Sketch. Recall that the general form of the Nakada α-continued fraction maps is Tα(x) =(
−d ε
1 0

)
·x. As

(
−d ε
1 0

)
=

(
−d −1
1 0

)(
1 0
0 −ε

)
, one can show that for all α, the group ΓTα

is the modular group. As well, for α > 0, the nontrivial coset of ΓTα
in Γ̂Tα

is represented by U .

Let D = RU =

(
0 1
1 0

)
. One has DA(x, y)U =

(
1 −y
x 1− xy

)
. For each α ∈ (0, 1), [KSS]

give a positive planar extension Ωα for Tα. One now easily verifies that Σ = Σα satisfies the
hypotheses of Theorem 2.2 to form a cross section to the geodesic flow on the unit tangent
bundle of the modular surface. By Arnoux’s [Ar] the result holds in the case of α = 1, the case
of regular continued fractions. By [KSS] (or by [CT]), the product h(Tα)µ(Ωα) is constant for
the set of 0 < α ≤ 1. Thus, for each of these values of α, Theorem 2.2 applies to show that the
first return system to Σα is an extension for the system of Tα. □

In fact, [AS], influenced by the formulation in the α = 1 case due to the geometric approach
of [Ar], work with the cross section obtained by applying R to Σ.

2.5.4. Realizable first return type. The above results motivated [AS2] (in the determinant one
setting) to define a piecewise Möbius interval map T to be of first return type if: (1) T has a
planar extension, with 0 < µ(Ω) < ∞; (2) ΓT is Fuchsian, of finite covolume; (3) τT (x) ≥ 0 for

ν-a.e. x; and, (4) for almost every (x, y) ∈ Ω and every non-trivial N ∈ Γ̂T with TN (x, y) ∈ Ω
and τ(N, x) ≥ 0, we have τT (x) ≤ τ(N, x).

Thus, in the determinant one setting if T is of first return type then one can verify that the
map ϕ of Theorem 2.1 does accord with the first return map of the geodesic flow. A natural
extension is thus found for T , along with information about its entropy.

We say that T is of realizable first return type whenever T is of first return type and if Γ̃T ̸= ΓT

then also: (5) there is a D ∈ PSL±1(Z) such the hypotheses (1)–(3) of Theorem 2.2 hold.
Note that when T is of realizable first return type then one of Theorem 2.1 or Theorem 2.2

holds. In particular, the system of T is a factor of the first return map to a cross section for the
geodesic flow on the unit tangent bundle of the surface uniformized by ΓT .

2.6. Bernoulli systems. The following material is called upon in § 4.3.
A symbolic Bernoulli system is given by taking the shift map σ on the bi-infinite sequences

X = AZ with A = {1, 2, . . . , n} for some n ∈ N. There is a standard manner to define the
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distance between two sequences, making X into a (compact) metric space. Cylinders of rank
m are defined as the set of sequences which agree for a specified consecutive sequence of length
m. For each choice of probability vector (p1, . . . , pn), thus with p1 + · · · + pn = 1, one gives a
cylinder of rank m the measure defined by taking the product of the pi corresponding to the
‘letters’ ai ∈ A which define the cylinder. A limiting process results in a dynamical system
(X,σ,B, µ). Any dynamical system isomorphic to such a system is called a Bernoulli system
(alternatively, a Bernoulli scheme). Note that one can also consider one-sided Bernoulli shifts,
but we ignore that here.

Ornstein, both singly and with co-authors, established several celebrated results about Bernoulli
systems.

Theorem 2.4. [Ornstein 1970, [O]] Entropy is a complete invariant for Bernoulli systems. That
is, if (X, T ,B, µ) and (Y,U,C , ν) are two Bernoulli systems, then these systems are isomorphic
if and only if they have the same entropy value.

A measure preserving flow Φt (as in § 2.5.1) is called a Bernoulli flow if for each t, the system
defined by Φt is a Bernoulli system. Due to a result of Abramov [Ab], it is traditional to say
that the entropy value of a measure preserving flow is the entropy of its time one map, Φ1.

Theorem 2.5. [Ornstein-Weiss 1973, [OW]] The geodesic flow on the unit tangent bundle of
a finite volume hyperbolic surface (or orbifold) is a Bernoulli flow of finite entropy.

A nice application of the following result can be found in Haas’ study of interval maps given
by a single Möbius transformation, [Ha].

Theorem 2.6. [Rychlik 1983, [R]] Suppose that T is a piecewise monotonic interval map with
a unique invariant probability measure that is equivalent to Lebesgue measure; is such that every
nonempty open subset is mapped onto the interval by some power of T ; and, whose Jacobian
T ′ is such that |1/T ′| has bounded variation. Then the natural extension of T is a Bernoulli
system.

Two dynamical systems are called quasi-isomorphic if their natural extensions are isomorphic.
See [W] for this term and pointers to the literature for examples of non-isomorphic but quasi-
isomorphic systems.

2.7. Terse review of the setting of [CKS]. We call on this material for applications in § 3.6,
and for examples in §§ 3.2 and 4.4 (including the motivating figures, Figure 6 and Figure 7).
As well, Remark 4.11 calls on this material to suggest how some of our results can be used in
[CKS2].

As mentioned in the introduction, we came to the present work in search of tools to further
the study of a one-parameter family of piecewise Möbius interval maps associated to each of
a countably infinite family of triangle Fuchsian groups begun in [CKS]. Here we give a quick
review of some of the notation and terminology from that article. Besides providing direct
motivation for the work here, as with the Nakada α-continued fractions, this material affords a
setting for our illustrative applications throughout this paper.

For integer n ≥ 3 we let ν = νn = 2 cosπ/n and

t := tn = 1 + 2 cosπ/n.

We use the group Gn ⊂ PSL(2,R) generated by

(10) A =

(
1 t
0 1

)
, C =

(
−1 1
−1 0

)
.
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Figure 2. Approximate plots of 100,000 points of a T3,0.14-orbit (left), and its
image under Z(x, y) of (7).

(We will have no direct use of the matrix B = A−1C of [CKS]. Furthermore, that paper studies
a larger collection of groups, indexed by a pair of integers, (m,n); here we have set the index m
equal to 3.) The group Gn is a Fuchsian triangle group of signature (0; 3, n,∞).

Fix n ≥ 3. For each α ∈ [0, 1], let ℓ0(α) = (α− 1)t, r0(α) = αt and Iα = In,α = [ℓ0(α), r0(α)).
Our interval maps are piecewise Möbius, of the form

(11) Tα = Tn,α : [ℓ0(α), r0(α)] → Iα, x 7→ AkCl · x

where ℓ ∈ {1, 2} is minimal such that Cl · x /∈ Iα and k is the unique integer such that then
AkCl · x ∈ Iα. We call bα(x) = (k, l) the α-digit of such an x, and say that x lies in the cylinder
∆α(k, l). That this does give continued fraction-like expansions of real numbers is shown in
[CKS].

The parameter interval is naturally partitioned, (0, 1] = (0, γn)∪[γn, ϵn)∪[ϵn, 1], where α < γn
if ∀x ∈ [ℓ0(α), r0(α)] the α-digit (k, l) of x has l = 1 and α ≥ ϵn if and only if both α > γn
and the α-digit of ℓ0(α) equals (k, 1) with k ≥ 2. See ([CKS], Figure 4.1) for plots indicating
dynamical behavior related to this partition. We informally refer to the set of α < γn as the
small α, and all others as large α; see Figures 2 and 7. For small α, we use simplified digits:
since l = 1 we only report the exponent of A; in this setting we use dα[1,∞), d

α

[1,∞) in place of

bα[1,∞), b
α

[1,∞), respectively. In general, the leftmost cylinder (whose left endpoint is ℓ0(α) ) and

the rightmost (with right endpoint r0(α) ) are possibly non-full; in the case of small α, these are
the only possible non-full cylinders.

For large α, since the Tα-image of

(12) bα = C−1 · ℓ0(α)
is exactly the image of ℓ0(α), the cylinder which has bα as its left endpoint is also a candidate
for non-fullness. Note that for r0(α) ≥ x ≥ bα we have Tα(x) = AkC2 · x for some k ∈ Z.

From this last, if α < α′ then bα < bα′ and if α, α′ are sufficiently close so that the α-digit
of the left endpoint of Iα equals (k, 1) as does also the α′-digit of the left endpoint of Iα, then
there are x ∈ ∆α(k, 2) ∩∆α′(1, 1), see Figure 7 for an indication of such a situation. With this
condition, Tα(x) = (AkC)A−1 · Tα′(x), but the Tα- and Tα′-images of any other x ∈ Iα ∩ Iα′

either agree, or differ by an application of A or A−1. We consider this matter in Proposition 4.17.
A main result of [CKS] is that there is a notation of matching intervals (there called syn-

chronization intervals), and for each n the complement of the union of the matching intervals
is a Lebesgue null subset of the parameter interval [0, 1]. We again call this complement the
exceptional set, E = En.
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We can define a map Tn,α on that portion of the plane fibering over the interval of definition
of Tn,α, and hope for finding planar extensions. Again, see Figures 2 and 7.

3. Bounded non-full range and finiteness of Ω implies ergodicity

In this section, we state and prove Theorem 3.6 and also give an application of it.
We use the term eventually expansive to describe an interval map T having some compositional

power r that is expansive, thus there is some c > 1 so that all x in the domain of T r satisfy
|(T r)′(x)| ≥ c.

As stated in the Introduction, we studied an infinite countable collection of one parameter
family of piecewise Möbius interval maps in [CKS]. As opposed to say the Nakada α-continued
fractions, almost all of the maps we considered there are not expansive maps. A direct proof
that each is eventually expansive seems tedious at best; this motivated us to seek a general
result that can be easily applied to deduce eventual expansitivity. We give such a result here.

One expects sufficiently nice continued fraction maps to be ergodic with respect to some
measure which is absolutely continuous with respect to Lebesgue measure; the easiest setting
to prove such results is when a Markov condition is fulfilled. In the setting of [CKS], and in
many cases of continued fraction like maps, Markov properties do not hold. In Definition 3.3
below, we introduce a property that is often fulfilled in these settings. This property and basic
finiteness conditions satisfied by a planar extension for a map then imply ergodicity and more.

3.1. Adler’s ‘Folklore Theorem’. Making an initial approach of Rényi much more practical,
Adler [Ad1, Ad2] gave conditions implying that an interval map f has a unique ergodic measure
that is equivalent to Lebesgue measure. In his afterword to [B], Adler sketched how to loosen
one of his original conditions, with the following result (to which he referred there as a folklore
theorem).

Theorem 3.1. [Adler, 1979; [Ad1, Ad2, B]] Suppose that f is an interval map such that:

i.) All cylinders of f are full;
ii.) f is twice differentiable;
iii.) f is eventually expansive;
iv.) there is a finite bound on |f ′′(x)|/f ′(x)2 for x in the domain of f .

Then f has a unique ergodic probability measure that is equivalent to Lebesgue measure.

Remark 3.2. Note that there can be at most one ergodic probability measure for f that
is equivalent to Lebesgue measure. The reason for this is that any two ergodic measures are
mutually singular; see say [EW]. Thus, the existence result in the theorem implies the uniqueness
result.

3.2. Statement of first main result. Our first main result shows that, in short, boundedness
of fibers of Ω and a full cylinder for the given interval map implies ergodicity and more.

3.2.1. Cylinder covering property. We introduce a condition inspired by a condition introduced
by Ito-Yuri [IY]. Their finite range property holds for a map f if there is a finite set of measurable
subsets, say R = {V0, . . . , VN} of the interval such that for every n ∈ N the image under fn of
any rank n cylinder is in R. Of course, if every cylinder is full, then that f has the property as
is shown by letting R be the singleton consisting of the interval of definition itself. That is, the
finite range property is a weakening of Adler’s condition of having full cylinders. We introduce
a property implied by the finite range property whenever there are infinitely many full cylinders
for f .
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Definition 3.3. We say that an interval map has bounded non-full range if there is a full cylinder
such that the orbits of the endpoints of all non-full cylinders (and hence of all cylinders) avoid
the interior of this full cylinder.

Thus, under this property, the range under all positive compositional powers of the interval
map of each endpoint of any non-full cylinder is bounded away from the interior of some full
cylinder.

To illustrate the ease of verification of our property, we show that the bounded non-full range
property holds for a large subset of one of the most studied families of continued fraction maps,
the Nakada α-continued fractions [N]. Recall the review of these in § 2.3.

Lemma 3.4. Let E denote the exceptional set for Nakada’s α-continued fractions. Both every
rational α ∈ (0, 1] and every α ∈ E is such that Nakada’s α-continued fraction map Tα has
bounded non-full range.

Proof. Whenever α ∈ Q ∩ (0, 1], the endpoints of [α − 1, α) have finite α-expansion, both
eventually reaching zero. Since for any α, of the infinitely many cylinders of Tα, the only
possible non-full cylinders are those of these endpoints. Furthermore, whether each is non-full
or not depends only on the image of α− 1 or α, respectively. For these rational values of α, we
thus have that the corresponding Tα have bounded non-full range.

Recall that T1 is the regular continued fraction map. In the proof of ([KSS], Lemma 6.8; note
that matching intervals are called synchronization intervals in that paper) a result of [CT] is
verified: α ∈ E if and only if Tn

1 (α) ≥ α for all n ∈ N. In particular, if α ∈ E then its regular
continued fraction expansion is of the form [0; a1, a2, . . . ] with a1 ≥ an for all n > 1 and in
particular the ai take on only finitely many values. Now, given this expansion of α ∈ E , from
([KSS], Proposition 4.1) the α-expansion of α− 1 has digits contained in a finite set and hence
from ([KSS] Lemma 6.7) also the α-digits of α itself are contained in a finite set. Since the
α-digits correspond to cylinders, Tα is of bounded non-full range. □

The above illustrates a setting where the finite range property fails, but our property holds.
This is due to the fact that although for any α ∈ E we have that both endpoints of Iα have
bounded digits, their orbits include infinitely many distinct points.

We further illustrate the verification of the property.

Example 3.5. As recalled in § 2.7, in [CKS] we study families of maps Tn,α, n > 3, α ∈ [0, 1]
related to certain Fuchsian triangle groups, Gn. Fixing n, and α, the corresponding maps are
of the basic form x 7→ AkCl · x, for various integers k, l, where A,C ∈ Gn are explicitly given in
§ 2.7. For each n, there is a real value γn such that for all α < γn, the map indexed by α is of
the simpler form x 7→ AkC · x.

Fix n and a ‘small’ α, thus α ∈ (0, γn). In this setting, — similar to the case of the Nakada
α-fractions — there are only at most two non-full cylinders, the leftmost cylinder whose left
endpoint is ℓ0(α) and the rightmost with right endpoint r0(α). Suppose further that α is in
the exceptional set En. Subsection 4.5 of [CKS] shows that the Tn,α-orbit of ℓ0(α) meets only
the two leftmost cylinders, while the Tn,α-orbit of r0(α) meets only the two rightmost cylinders.
From this, we find that each of these maps has bounded non-full range. Indeed, here there are
infinitely many full cylinders avoided by the orbits in question.

3.2.2. Statement of result.

Theorem 3.6. Suppose that T is a piecewise Möbius map on an interval I of finite Lebesgue
measure and T : Ω → Ω is a planar extension for T such that
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a) the vertical fibers of Ω are of positive Lebesgue measure bounded away from both zero
and infinity;

b) the vertical fibers are bounded away from the locus of y = −1/x;
c) T has at least one full cylinder for which the set of ratios of the Lebesgue measure of the

T -image of each vertical fiber above this cylinder to the Lebesgue measure of its receiving
fiber is bounded away from zero and one;

d) T has bounded non-full range.

Let µ′ be the normalization of µ to a probability measure on Ω and ν be the marginal measure
of µ′. Also let B,B′ denote the Borel algebras of I,Ω respectively. Then

i.) 0 < µ(Ω) <∞;
ii.) T is eventually expansive;
iii.) T is ergodic with respect to ν;
iv.) the system (T ,Ω,B′, µ′) is the natural extension of (T, I,B, ν). In particular, the two

dimensional system is also ergodic.

That µ(Ω) is finite is easily seen. We prove the remaining conclusions in three steps.

3.3. Eventual expansivity.

Proposition 3.7. Under the hypotheses (a)–(c) of Theorem 3.6, T is eventually expansive.

Proof. Let T̂ : Σ → Σ denote the conjugate two-dimensional system where Σ is the image of
Ω under the map Z(x, y) of (7). Lebesgue measure is invariant for this conjugate system. In

particular, for each x ∈ I the vertical fiber Fx ⊂ Σ projecting to x is mapped by T̂ into the
vertical fiber FTx, with derivative along Fx constantly equal to (T ′(x))−1. Hypotheses (a) and
(b) imply that there are positive finite bounds 0 < b < B on the one-dimensional Lebesgue
measure of the Fx.

The third hypothesis also carries over to the conjugate system. Let us temporarily use vertical
bars to indicate the one-dimensional Lebesgue measure on vertical fibers of Σ. Denoting the
chosen full cylinder by C, we have that the set of ratios{ |T̂ (Fx)|

|FTx|
: x ∈ C

}
is also bounded away from zero and one. We can thus find a ρ with 0 < ρ < 1 such that 1− ρ
is a lower bound and ρ an upper bound.

Now, for any z ∈ I, the fiber at z is the union of the images of the fibers over the preimages

of z; that is, Fz = ∪Tx=z T̂ (Fx). Given x ∈ I \ C, set z = Tx. Since C is a full cylinder, there

is some x′ ∈ C such that T (x′) = z and hence | T̂ (Fx′) | gives at least 1− ρ of |FTx|. It follows
that |T̂ (Fx)| ≤ ρ|FTx|. Hence, for all x ∈ I, we have |T̂ (Fx)| ≤ ρ|FTx|.

Recall that T̂ has constant derivative along each vertical fiber. Thus, ratios of measures are
preserved; in particular

| T̂ 2(Fx) |
| T̂ (FTx) |

=
| T̂ (Fx) |
| FTx |

.

Using a telescoping expansion and substituting the above, we deduce

| T̂ 2(Fx) |
| FT 2x |

=
| T̂ (Fx) |
| FTx |

· | T̂ (FTx) |
| FT 2x |

≤ ρ2

and similarly for higher powers. Now let r ∈ N be such that ρr−1B < b. Then for any x ∈ I

we have b ≤ |Fx| but |T̂ r(Fx)| ≤ ρr | FT rx |≤ ρrB < ρb. Thus, |T̂ r(Fx)| < ρ|Fx|. Since T̂ r also
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preserves two-dimensional Lebesgue measure, we must have that |(T r)′(x)| > ρ−1, with now the
vertical bars denoting the absolute value. Therefore, T r is expansive. □

3.4. Ergodicity.

Proposition 3.8. Under the hypotheses of Theorem 3.6, T is ergodic with respect to ν.

Proof. Since T has bounded non-full range, there is a largest interval, say J , comprised of full

cylinders avoided by the orbits of the endpoints of all non-full cylinders. Let T̃ be the first return
map to J of orbits of T . We will show that the conditions for the Adler result, Theorem 3.1,

hold for f = T̃ . Since ν is equivalent to Lebesgue, so is the probability measure it induces
on J . As per Remark 3.2, the Adler result will then imply that this induced measure itself is
ergodic. Ergodicity of a map induced from a general f implies that f itself is also ergodic under
reasonable hypotheses (see Theorem 17.2.4 of [Sch2]). Thus, the ergodicity of ν will follow.
Again by the remark, this implies that ν is the unique ergodic invariant measure for T that is
equivalent to Lebesgue measure.

The cylinders of T̃ are of the form Qβ where β = (a1, . . . , am) with a1 an index of a T -cylinder
meeting J , [a1, . . . , am] a rank m cylinder for T , and Qβ = [a1, . . . , am]∩ T−m(J). By Poincaré
recurrence, up to measure zero J is the union of the Qβ . Since J consists of full cylinders for T

which the T -orbits of the endpoints of T -cylinders never enter, each Qβ is a full T̃ -cylinder.

The corresponding planar map T̃ is bijective up to µ-measure zero on Ω̃, the region defined
by deleting the portion of Ω projecting to the complement of J . In particular, the arguments in

the proof of Theorem 3.6 apply, and thus T̃ is eventually expansive.

We have ensured that T̃ has full cylinders, and is eventually expansive. Our construction
also preserves the property of being twice differentiable. The crux of the matter is thus to show
that Adler’s fourth condition holds. Since T is a piecewise Möbius map, certainly for ν-a.e.

x, there is some matrix M =

(
a b
c d

)
such that T̃ (x) = M · x. The first derivative here is

detM (cx+ d)−2, we must bound |c(cx+ d)| over all such x,M .

Since the vertical fibers of Z(Ω) are bounded, so are those of Z(Ω̃). That is, every vertical
fiber has Lebesgue measure in an interval [b, B] bounded away from zero and infinity. To avoid

notational unpleasantries, let us now use T̂ to denote the conjugate of T̃ acting on Z(Ω̃); see (8).

Recall that restricting T̂ to Fx (the vertical fiber at x) defines a map whose derivative equals

|T̃ ′(x)|−1. It follows that |T̃ ′(x)|−1 ≤ B/b for all x ∈ I. Hence, the set of values (cx + d)2y is
bounded. The boundedness of the fibers directly implies that the values (cx+ d)2y − c(cx+ d)
are bounded. We conclude that c(cx + d) is bounded throughout I. This implies that Adler’s

fourth condition holds. Therefore, T̃ is ergodic and, as argued in the first paragraph of this
proof, the ergodicity of ν holds. □

Remark 3.9. Given the above argument, one could ask whether it is always possible to induce
past non-full cylinders and be sure that Adler’s conditions hold. We strongly doubt this, as in
general the return iteration number to the complement of those cylinders will be unbounded.
As Zweimüller [Z] states, this in general will cause Adler’s condition (4) to fail. In our setting,
of course, such “explosion” is impossible due to the boundedness of the vertical fibers of Z(Ω).

3.5. Natural extension. Arnoux in particular has been a proponent of solving for planar
presentations using properties of the interval map. In particular, the main results of [AS3]
imply that (1) if a piecewise Möbius interval map T : I → I is (eventually) expansive then
its associated naive two-dimensional map T : I × R → I × R induces a contraction on the
complete metric space of compact subsets of this product, where a modified Hausdorff metric
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is used. (The contraction sends a compact K to the closure of the union of the Tβ(Kβ), where
Kβ is the portion of K projecting to the β-cylinder.) And, (2) when the fixed point, say Ω,
of this contraction has positive measure and T is bijective on Ω up to measure zero, then this
two-dimensional system is a planar natural extension of T .

We thus find the following.

Proposition 3.10. Under the hypotheses of Theorem 3.6, (T ,Ω,B′, µ′) is the natural extension
of (T, I,B, ν).

3.6. Application to each of an infinite collection of maps. The goal of this subsection is
to apply Theorem 3.6 to a family of maps whose possible ergodicity was unknown, and indeed,
whose planar natural extensions had not been determined. We reach this goal in Corollary 3.13.

Our maps are related to those studied in [CKS], again refer to § 2.7. The dynamics of the
maps Tn,1 (among others) are presented in Section 3 of [CKS]. Here we give a planar extension
for each of these maps. Each is of infinite mass; by “accelerating” each of the interval maps past
the domain of the parabolic element of the underlying group whose fixed point is responsible
for the infinitude of the mass, we obtain an interval map of invariant probability measure, as
verified by applying Theorem 3.6.

Fix n ≥ 3, let T = Tn,1 and U = AC(AC2)n−2, and note that t = tn = r0(1). From [CKS],
one has T i(t) = (AC2)n−2 · t for 1 ≤ i ≤ n− 2 and Tn−1(t) = U · t = t. Furthermore, all of the
cylinders of T are full except for the right most cylinder, ∆(1, 2), of endpoints µ+1/t = 1+1/t
and t. It is easily verified that (AC2)n−2 · t = 1.

Compare the following with Figure 3.

Proposition 3.11. Fix n ≥ 3 and let T = Tn,1 and T be the usual associated two-dimensional
map. Let r0, r1, . . . , rn−2 be the T -orbit of r0 = t. Then T is bijective up to µ-measure zero on

Ω = [0, 1]× [−1, 0] ∪
n−2⋃
i=1

[ri, ri−1]× [−1/ri−1, 0].

Proof. We have that (0, 1] is the union of the cylinders ∆(i, 1) with i ∈ N. Similarly, (1, 1+1/t]
is the union of the ∆(j, 2) with j ≥ 2. Since 1+ 1/t lies between 1 = rn−2 and rn−3, the y-fiber
of Ω above each of these ∆(j, 2) is [−1/rn−3, 0], whereas every ∆(i, 1) has y-fibers given by
[−1, 0]. Recall that R is given in (4); since RCR−1 · 0 = −1, it follows that RAkCR−1 · −1 =
RAkC2R−1 · 0 for any k. Hence, each rectangle ∆(k, 1)× [−1, 0] is mapped above the image of
∆(k, 2)× [−1/rn−3, 0] so as to share exactly a common horizontal line.

Now, AC2 · rn−3 = 1 can be used to show that RC2AC2R−1 · −1/rn−3 = 0 and a similar
observation implies that each rectangle ∆(k, 1) × [−1, 0] is mapped below the image of ∆(k +
1, 2)× [−1/rn−3, 0] so as to share exactly a common horizontal line.

Therefore, T sends Ω ∩ {x ≤ 1 + 1/t} bijectively up to measure zero to (0, t] × [−1/t, 0).
Furthermore, since every TM preserves the locus y = −1/x, we easily find that i = 1, . . . , n− 4,

TAC2( [ri, ri−1]× [−1/ri−1, 0] ) = [ri+1, ri]× [−1/ri,−1/t].

(Of course, when n ≤ 4 we must make appropriate adjustments.) Furthermore, TAC2 sends
(1 + 1/t, rn−3]× [−1/rn−3, 0] to (0, 1]× [−1,−1/t]. The result thus holds. □

Since U is a conjugate (up to sign) of A−1 we see that it is a parabolic matrix and thus t
is parabolic fixed point under T . This in a sense is the cause of the invariant measure µ being
infinite on Ω. Just as in the treatment of Tn,0 in [CS], we “accelerate” our map by inducing past
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(t,−1/t)

(r1,−1/r1)

(rn−3,−1/rn−3)
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•

•

• •

•

•
• •

•
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•
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(0, 0)

(0, −1
t )

(0,−1)

(1,−1)

(t, 0)

(r1,−1/r1)

(r2,
−1

r2
)

(rn−3,
−1

rn−3
)

Figure 3. Schematic representation of the domain Ωn,1, and its image under
Tn,1, n ≥ 3 as discussed in Proposition 3.11. Compare with ([CKS], left side of
Fig. 6). Here, on the left side, the red dotted curve plots y = −1/x the only
points of Ω on this are the (red) vertices coming from the orbit of (t,−1/t).
(Recall that our measure is given by dµ = (1 + xy)−2 dx dy !) Blocks fibering
over intervals whose endpoints are consecutive members of the orbit of r0 = t
under the interval map are filled with solid colors. Red hatching indicates blocks
fibering over cylinders indexed by (i, 1), i ∈ N. Blue hatching indicates blocks
fibering over cylinders indexed by (j, 2), j ≥ 2. Images on the right hand side
correspondingly colored, except that the cross-hatching indicates lamination
from the hatched portions.

the cylinder (here of rank n−1) related to the parabolic element. There is an easily determined
domain of bijectivity for the corresponding two-dimensional map. (Indeed the following result
is a specific case of a general phenomenon.) Compare the following with Figure 4.

Lemma 3.12. Fix n ≥ 3. Let ϵ0 = U−1 · 0 and let g(x) be the first return map of Tn,1 to (0, ϵ0)
and G the corresponding two-dimensional map. Then G is bijective up to µ-measure zero on

Γ = Ω \ ∪n−2
i=0 T(AC2)i(D),

where D = (ϵ0, t]× [−1/t, 0].
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• •
•

•

•

•

• •

•
(0, 0)

(0,−1)

(ϵ0, 0)

D

T (D)

T n−3(D)

T n−2(D)

Figure 4. Schematic representation of the domain Γ for the accelerated two-
dimensional map. The domain is given by deleting from Ω the rectangle D =
(ϵ0, t]× [−t, 0] and its images under T , . . . , T n−2. See Lemma 3.12.

Proof. By definition, g(x) = T i(x) where i = i(x) ∈ N is minimal such that T i(x) < ϵ0. Since
(ϵ0, t] = ∆( (1, 1)n−2(1, 2) ), we have that g(x) = U j ◦ T (x) where j ≥ 0 is minimal such that
the image is outside of the rank n− 1 cylinder ∆( (1, 2)n−2(1, 1) ).

Now, (x, y) ∈ D if and only if T (x) ∈ ∆( (1, 2)n−2(1, 1) ) and therefore the T -orbit of (x, y)
includes the initial sequence {T(AC2)i(x, y)}n−2

i=0 . Furthermore, due to the bijectivity of T , any

(x, y) ∈ ∪n−2
i=0 T(AC2)i(D) must belong to a length n − 1 orbit sequence with an initial orbit

element in D.
Suppose now that (x, y) ∈ Γ and T (x, y) /∈ D. From the previous paragraph, we have that

g(x) = T (x) = M · x for some matrix M and hence both G(x, y) = T (x, y) = TM (x, y) and
G(x, y) must indeed belong to Γ.

On the other hand, if (x, y) ∈ Γ with T (x, y) ∈ D, then T (x) ∈ (ϵ0, t) and there is a j ∈ N
such that G(x, y) = TUj ◦ T (x, y) = TAC ◦ T(AC2)n−2 ◦ TUj−1 ◦ T (x, y). But, TUj−1 ◦ T (x, y) ∈ D
and hence while (TAC)

−1 ◦ G(x, y) ∈ ∪n−2
i=0 T(AC2)i(D), the application of TAC must send this

value outside of that union. That is, here also G(x, y) must belong to Γ.
The bijectivity of G on Γ now follows immediately from that of T on Ω. □

Corollary 3.13. Fix n ≥ 3 and let g(x) be induced from Tn,1 and let Γ be as above. Then
g(x) is expansive and is ergodic with respect to the probability measure that is the normalized
marginal measure from µ = (1 + xy)−2 dx dy on Γ.

Proof. From the definition of Ω, it follows that Ω meets the curve y = −1/x exactly in the
T -orbit of (t,−1/t), which is of course a point in D. As well, the remainder of Ω lies above this
curve (with x ≥ 0). Since Γ = Ω \ ∪n−2

i=0 T(AC2)i(D), it follows that Γ not only does not meet
the curve, but in fact stays a bounded distance away. From this, hypothesis (b) of Theorem 3.6
is satisfied for the piecewise Möbius map g(x) on the interval (0, ϵ0) with G bijective on Γ; the
other hypotheses are easily verified, and hence the result holds. □
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4. Quilting as a proof tool

We now discuss a technique used to date for solving for the planar extension of a piecewise
Möbius interval map beginning with such a planar extension for a sufficiently “nearby” map.
This technique, called quilting, was introduced in [KSSm], and has its roots in the discussion
of the two-dimensional interpretation of “insertion” and “deletion” in the Ph.D. dissertation
[Kr]. Theorem 4.3, shows that one can use quilting to prove that certain properties are shared
between appropriately nearby systems.

4.1. Quilting defined, main properties announced. We give a basic definition.

Definition 4.1. Suppose that f, g are piecewise Möbius interval maps on If , Ig each with un-
countably many cylinders and with finite nonzero µ-measure planar two-dimensional domains
of bijectivity Ωf ,Ωg for corresponding two-dimensional maps F ,G, respectively. For x ∈ If let
bf (x) denote the f -digit of x (informally, this thus denotes the corresponding Möbius transfor-
mation which applied to x gives the value f(x) ), and similarly for bg(x). Let

∆ = ∆f,g = {x ∈ If ∩ Ig | bf (x) ̸= bg(x)} and

C = Cf = {(x, y) ∈ Ωf | x ∈ ∆}.

We then construct a domain on which we will show that G is bijective (up to sets of measure
zero) by deleting the forward F-orbit of C and adding in the forward G-orbit of C (here we
extend G to be the piecewise map on Ig × R given by the TM where g is given piecewise by
x 7→M · x, recall (6)). In general, each of these orbits is infinite and might even sweep out the
respective domains up to measure zero. For a practical version of this approach, we introduce
some finiteness conditions.

Recall that we are interested in measure theoretic results, and thus use disjointness of sets to
mean that they meet in at most a null set. See Figures 6 and 7 for representations of quilting
in specific settings.

Definition 4.2. We say that Ωg can be countably quilted from Ωf if C has positive measure and

i.) There is an at most countable partition of C by Ci and corresponding integers di, ai such

that F1+di

|Ci
= G1+ai

|Ci
;

ii.) The F j( Ci ) indexed over all i and 1 ≤ j ≤ di is pairwise disjoint and their union has
strictly less than full measure in Ωf , and similarly the Gj(Ci) are pairwise disjoint, with
their union of finite measure; and,

iii.)

(13) Ωg =

(
Ωf \

∞∐
i=1

di∐
j=1

F j( Ci )
)
⨿

∞∐
i=1

ai∐
j=1

Gj(Ci) .

Of course, when the partition is finite of cardinality n, then n replaces the infinite upper
limits appearing in (13). We then speak of finite quilting. For simplicity’s sake, we will write
quilting to denote countable quilting.

Theorem 4.3. Assume that Ωf is of finite µ-measure. Quilting preserves the properties of: (a)
ergodicity of two dimensional maps; (b) this planar extension giving the natural extension of the
interval map’s system; and, when (b) holds allows for an explicit expression of the entropy of g
in terms of that of f .

We give precise statements in the propositions of the subsequent subsection, which together
prove the theorem.
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p ∈ C (xi, yi) · · · · · · (xi+a, yi+a)

F(p) · · · Fd(p)

G

F

G G G

F F

F

Figure 5. When quilting, forward G-orbit segments beginning at a point in C
rejoin forward F-orbit segments.

Remark 4.4. Theorem 4.3 certainly holds when the systems of F and of G are isomorphic. This
is the case in particular when ai = di holds for each Ci of the quilting partition of C. Indeed,

we can then give an explicit isomorphism, φ : Ωf → Ωg by fixing Ωf \
∐∞

i=1

∐di

j=1 F j( Ci) and
applying F j(x, y) 7→ Gj(x, y) for 1 ≤ j ≤ ai for each (x, y) ∈ Ci, for each Ci.

4.2. Proofs of main properties.

Proposition 4.5. Suppose that f, g are piecewise Möbius interval maps such that Ωg can be
quilted from Ωf , and that µ(Ωf ) < ∞. If F : Ωf → Ωf is ergodic with respect to the measure
µ, then both G and g are ergodic, with respect to µ on Ωg and its marginal measure on Ig,
respectively.

Proof. Since the dynamical system of g is a factor of that of G, its ergodicity will follow from
that of this latter system. Now suppose E ⊂ Ωg is µ-measurable, is not of full measure, and
is invariant under G. We aim to show that E is a null set. Recall that both F ,G preserve the
measure.

By definition of C, we have that G agrees with F on Ωg ∩ (Ωf \C). The ergodicity of F shows
that we may assume that each G-orbit contained in E which meets Ωg ∩ (Ωf \ C) also exits this
set. That is, we may assume that E is contained in the set of forward G-orbits of points of C.
Each p ∈ C has an initial G-orbit segment which meets its forward F-orbit. By choosing the
interpolating forward F-orbit segments until their meeting and then through the next entrance
to C, we form an F-invariant set. The ergodicity of F shows that this is a nullset and therefore
so must be E. □

Proposition 4.6. Suppose that f, g are piecewise Möbius interval maps such that Ωg can be
quilted from Ωf and that the dynamical system of F is the natural extension of that of f . Then
the dynamical system of G is the natural extension of that of g.

Proof. The natural extension is the minimal invertible system of which our given system is a
factor. Let us call any bi-infinite sequence (xi)i∈Z with each xi ∈ Ig satisfying that for all i,
g(xi) = xi+1 a bi-infinite g-orbit and similarly for our other maps. We then say that a bi-infinite
G-orbit (xi, yi)i∈Z projects to the bi-infinite g-orbit (xi)i∈Z .

To show that the system of G is the natural extension of the system of g, it suffices to show
that for each bi-infinite g-orbit there is a unique bi-infinite G-orbit (xi, yi)i∈Z in Ωg projecting
to it. By hypothesis, the analogous statement is true for the pair f,F .

Step 1: From G- to f-orbits. We first associate to each bi-infinite G-orbit (xi, yi)i∈Z in
Ωg a bi-infinite f -orbit. Let us discern two types of G-orbit orbit segments, those of type a,
which begin at a point p ∈ C and end at the common point Fd+1(p) = Ga+1(p); and those
of type c, common to both by lying in Ωg ∩ (Ωf \ C). An orbit segment of type c but whose
extension thereafter exits Ωg ∩ (Ωf \ C) must be such that the extension meets C. That is, this
orbit segment is then followed by an orbit segment of type a. Similarly, an orbit segment of
each of type a is followed by a segment of one of two types. In each of these settings, there
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is a uniquely associated F-orbit segment; this segment is given by equality when the G-orbit
segment is of type c, and otherwise by the F-orbit segment demanded as part of the definition
of the type a G-orbit segment. Further note that an orbit segment of either of the two types
begins at the ending of a segment of one of the two types. That is, we can uniquely extend
the transcription from G-orbit segments to F-orbit segments infinitely in both directions. With
this, we have uniquely associated to each bi-infinite G-orbit (xi, yi)i∈Z in Ωg a bi-infinite F-orbit
in Ωf . Finally, by projecting, we find a bi-infinite f -orbit.

Step 2: Uniqueness. Fix now a bi-infinite g-orbit γ = (xi)i∈Z. Let us call any choice of
G-orbit in Ωg projecting to γ a ‘lift’ of γ. From the above, to a bi-infinite g-orbit γ = (xi)i∈Z we
associate one bi-infinite f -orbit per lift of γ. We now aim to show that these bi-infinite f -orbits
are one and the same.

We first note that γ determines a unique bi-infinite sequence (Mi)i∈Z such that xi+1 =Mi ·xi;
and hence any choice of bi-infinite G-orbit in Ωg projecting to γ satisfies (xi+1, yi+1) = TMi(xi, yi)
for all i. The analogous statement holds for bi-infinite f - and F-orbits.

Now, any lift of γ can be partitioned into segments of type a and c. Consider the set
J = {j |xj ∈ ∆}. If J = ∅ then any G-orbit in Ωg projecting to γ lies in Ωg ∩ (Ωf \ C). This is
then also an F-orbit. The projections agree, and thus γ itself is our desired bi-infinite f -orbit.
Now if J is non-empty then any lift of γ is such that there is some j with p = (xj , yj) ∈ C
and the previous paragraph then shows that this lift’s associated bi-infinite f -orbit contains the
forward f -orbit of xj . If another lift of γ is such that it contains a point q = (xj , y

′
j) with

q /∈ C then q occurs in what we can call the ‘middle’ of some G-orbit segment of type a. But
then this segment is announced by a p′ = (xj′ , yj′) ∈ C with j′ < j, and again by invoking the
previous paragraph, we have that the forward f -orbit of xj′ is contained in this lift’s associated
bi-infinite f -orbit. Furthermore, this forward f -orbit contains that of xj . From this, if J has a
least element j, then every lift of γ has its associated bi-infinite f -orbit containing the forward
f -orbit of the corresponding xj . But, each such lift must then have backwards infinite orbit
completely of type c. That is, the associated bi-infinite f -orbits must also all agree for indices
less than j. By similar reasoning, in the case of J having no least element, all of the lifts of γ
share the same bi-infinite f -orbit.

Step 3: Conclusion. By hypothesis, each bi-infinite f -orbit has exactly one bi-infinite F-
orbit in Ωf projecting to it. Since the bi-infinite F-orbit in Ωf associated to a bi-infinite G-orbit
in Ωf certainly uniquely identifies this G-orbit, we conclude that γ has exactly one bi-infinite
G-orbit in Ωf projecting to it. □

Proposition 4.7. Suppose that f, g are piecewise Möbius interval maps such that Ωg can be
quilted from Ωf . Then the entropy of F and G are related by

h(G) = h(F)
µ(Ωf )

µ(Ωg)
.

If furthermore the dynamical system of F is the natural extension of that of f , then the entropy
of g is given by

(14) h(g) =

(
1 +

∞∑
i=1

(ai − di) ν(∆i )

)−1

h(f),

where for each i, Ci projects to ∆i ⊂ If and ν is the marginal probability measure induced from
µ on Ωf .

Proof. We can compute the entropy of G in terms of that of F by using Abramov’s formula (as

mentioned in 2.1) Let Ωf,g := Ωf \
∐∞

i=1

∐di

j=1 F j( Ci ). The first return maps induced from
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each of F and G to Ωf,g are equal. Therefore,

h(G)µ(Ωg)

µ(Ωf,g)
=
h(F)µ(Ωf )

µ(Ωf,g)
.

Since our various maps are µ-measure preserving,

h(G) =
(
1 +

∞∑
i=1

(ai − di)
µ(Ci)
µ(Ωα)

)−1

h(F).

If F gives the natural extension of f , then they have the same entropy. Furthermore, from
the previous proposition, G then gives the natural extension of g and thus these also have equal
entropy. Since each ∆i is the projection of Ci, we have that ν(∆i ) = µ(Ci)/µ(Ωα). Therefore,
(14) holds. □

4.3. Property of realizable first return type is also preserved. We use notation, termi-
nology and results presented in § 2.5.

Proposition 4.8. Suppose that f, g are expansive piecewise Möbius interval maps such that

Ωg can be quilted from Ωf . Suppose that Γf = Γg is of finite covolume, Γ̂f = Γ̂g, and f is
of realizable first return type. Then g is also of realizable first return type. Furthermore, both
maps: are ergodic; have their planar extensions as natural extensions; and, are factors of the
first return map to a section for the geodesic flow on T 1(Γf\H).

Proof. Since f is of realizable first return type, from Theorem 2.1 or Theorem 2.2, we have
that f is ergodic, expansive, that its planar extension gives a natural extension, and that

wfh(f)µ(Ωf ) = vol(T 1(Γf\H) ), where wf ∈ {1, 2} is equal to 1 if only if Γ̂f = Γf .
Now, Proposition 4.7 gives h(G)µ(Ωg) = h(F)µ(Ωf ). Proposition 4.6 and the fact that

entropy is shared by a map and its natural extension, then gives that h(g)µ(Ωg) = h(f)µ(Ωf ).
Hence, h(g)µ(Ωg) equals wf times the volume of the unit tangent bundle of Γg\H. By hypothesis,
g is expansive, Proposition 4.5 shows g is ergodic, and hence g is of realizable first return type. □

We now also use terminology and results of § 2.6. Recall that ‘quasi-isomorphic’ means having
isomorphic natural extensions.

Proposition 4.9. Assume the hypotheses of the previous proposition. If |1/f ′| is of bounded
variation then the natural extension of f is a Bernoulli system, similarly for g; if both have this
property, then their systems are quasi-isomorphic if and only of they share the same entropy
value.

Proof. The fulfillment of the bounded variation condition for either map completes the hypothe-
ses for the Rychlik result, Theorem 2.6, and thus guarantees that the natural extension system
is Bernoulli. If this occurs for both maps, Ornstein’s fundamental result Theorem 2.4 shows
that isomorphism of the natural extension systems is determined by entropy values. □

Remark 4.10. In the above, if |1/f ′| is of bounded variation and f is of determinant one type

(that is, if Γ̂f = Γf ) then the cross section to the geodesic flow on T 1(Γf\H) associated to f in
Theorem 2.1, being a version of the natural extension, is Bernoulli. It is not always true that
a cross section to a Bernoulli flow has Bernoulli first return system, as discussed in [OW2] and
[ORW].

Remark 4.11. For each of the maps T = Tn,α discussed in § 2.7 and for each x in its domain,
one has T ′(x) being equal to either (C ·x)′ or (C2 ·x)′ where C is given in (10). It easily follows
that |1/T ′| is of bounded variation. Results of [CKS] and the determination in [CKS2] of planar
extension systems then allow one to invoke the results of this subsection for the Tn,α.
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4.4. Finite quilting for close neighbors that match. We quickly give basic definitions
which capture the essence of the matching interval phenomenon — also known as: synchro-
nization [CKS], or short cycles [KU] — studied in various of families of continued fraction type
maps. Thereafter we show that under reasonable assumptions upon matching intervals there
are subintervals on which quilting applies. Our terminology and notation attempts to negotiate
between that of [CT] and of [CKS].

4.4.1. Matching: relations, intervals and their exponents. Suppose that we are given a one
parameter family of piecewise Möbius interval functions, {Tα}α∈I , indexed by α ranging over
some real interval I, each of whose interval of definition Iα = [ ℓ0(α), r0(α) ) is of fixed length λ.
(We will always assume that also | I | ≤ λ.) In particular, letting

(15) S : x 7→ x+ λ,

for all α we have ℓ0(α) = S−1 · r0(α).
A matching interval J ⊂ I is a subinterval such (1) that there are somem,n ∈ N such that for

all α ∈ J we have Tm
α ( ℓ0(α) ) = Tn

α ( r0(α) ), where m,n are minimal except possibly at finitely
many α ∈ J — we call the α ∈ J where this minimality holds typical — ; (2) the digits of the
expansions of the endpoints ℓ0(α) agree in that for all 1 ≤ i < m there is a Möbius transformation
Mi such that T i

α( ℓ0(α) ) = Mi · ℓ0(α) for all α ∈ J , and similarly for the r0(α); and, (3) there
are Möbius transformations LJ , RJ such that for all α ∈ J we have Tn−1

α ( r0(α) ) = RJ · r0(α)
and Tm−1

α ( ℓ0(α) ) = LJS
−1 · r0(α). We call m,n the matching exponents of J . In fact, we need

a further property of the family: say that the family has a matching relation if (4) there is some
Möbius transformation M such that for any matching interval, MLJS

−1 = RJ .

Remark 4.12. Note that the notion of matching is easily extended to orbits to the left and
right of points of discontinuities, see Bruin et al [BCMP] where this is done for a related setting.
We forgo doing this here, for simplicity’s sake.

Many of the well-studied families of continued fractions have matching relations.

Example 4.13. We briefly indicate a few of these.

• The Nakada α-continued fractions has a matching relation: let

(16) W =

(
1 0
−1 −1

)
,

then combining ([KSS] Remark 6.9) with ([KSS] Lemmas 6.2, 6.4) shows that M = W
gives the relation for each matching interval J . (Note that [CT] also showed that there
are matching intervals in the Nakada family, but express the matching relations in a
different manner than here.)

• In the setting of α-continued fraction expansions with odd partial quotients, [HKLM]

show a matching relation of the form MLJS
−1 = RJ , with M =

(
−1 0
2 1

)
see the final

line on their p. 28.

• The countably many families of § 2.7 coming from [CKS], are such that for each n the
corresponding family has a matching relation for the small α, those with α ∈ (0, γn),
see ([CKS], Prop. 5.2). There is a distinct matching relation on (γn, 1] (more precisely
for those parameter values, one splits each matching interval J into two pieces and finds
that there is a matching relation for all of the left hand pieces and a nearly identical
relation for all of the right hand pieces); see ([CKS], Lemma 6.2).
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4.4.2. Close neighbors. We are interested in applying quilting when α, α′ lie within the same
synchronization interval; quilting succeeds in the most straightforward manner if we require that
α, α′ are particularly close.

To lighten notation, let us write ℓi and ℓ
′
i for each of T i

α(ℓ0(α) ) and T
i
α′(ℓ0(α

′) ), respectively
and similarly for the orbits of the other endpoints. We use the notation of Definition 4.1 in the
following.

Definition 4.14. Suppose that J is a matching interval with corresponding matching exponents
m,n. We say that α, α′ ∈ J are close neighbors if ℓ′i, ℓi, r

′
j , rj ∈ Iα′ ∩ Iα for all 1 ≤ i ≤ m and

1 ≤ j ≤ n.

Note that the hypothesis on the orbit entries can equivalently be written as: The α-digit of ℓ′i
equals the α′-digit of ℓi and vice versa for each 1 ≤ i < m, and similarly for the various rj , r

′
j .

The majority of the aforementioned families have the following properties.

Definition 4.15. Fix a family of piecewise Möbius interval maps, F = {Tα |α ∈ I}.
(1) We say that F is of purely shift digit changes if for any α, α′ ∈ I whenever x ∈ ∆Tα,Tα′

then Tα(x) = S±1Tα′(x), where S is as in (15).

(2) Suppose that α ∈ J with J a matching interval of matching exponentsm,n. We say that
Ωα has locally constant fibers if its vertical fibers are constant between the points of the
initial orbits of ℓ0(α) and r0(α): that is, if the fibers are constant above the connected
components of the complement in Iα of {ℓi(α) | 0 ≤ i ≤ m− 1}∪{rj(α) | 0 ≤ j ≤ n− 1}.

See Figure 6 for a special case illustrating the following.

Proposition 4.16. Suppose that F = {Tα |α ∈ I} is a family of piecewise Möbius interval
maps of purely shift digit changes. Suppose further that α, α′ are close neighbors with α typical
for their common matching interval. Then Ωα′ can be finitely quilted from Ωα. Furthermore,
Ωα has locally constant fibers if and only if Ωα′ does.

Proof. For ease, assume that α′ < α, the other case follows by a symmetric argument. Thus,
Tα(C) fibers over [r′0, r

′
0) and hence we have Tα′( C) = TS−1 ◦ Tα( C). Since α, α′ are close

neighbors, they share a common matching interval J , let m,n be its matching exponents. Let
U = Uα be the Möbius transformation such that ℓm(α) = ULJ · ℓ0(α) and V = Vα be such
that rn(α) = V RJ · r0(α). Since F has only purely shift digit changes, the condition that
ℓ′i, ℓi, rj , r

′
j ∈ Iα′ ∩ Iα for the various i, j implies that when i < m and j < n these ℓ′i, ℓi, rj , r

′
j lie

outside of ∆Tα,Tα′ . Hence, T m+1
α′ (C) = TULJS−1 ◦ Tα(C) = TV RJ

◦ Tα(C) = T n+1
α (C).

We claim that
⋃m

i=1 T i
α′(C) is disjoint from Ωα. To this end, let k′ be minimal such that

T k′

α′ (C) ∩ Ωα has positive measure. (Since TS−1 ◦ Tα( C) projects to [ℓ′0, ℓ0) clearly k
′ > 1.) Let

(x, y) ∈ C such that T k′

α′ (x, y) ∈ Ωα. Again the close neighbors property gives that thereafter
the forward Tα′ -orbit of this point is given by α-admissible Möbius transformations, and thus
agrees with its forward Tα-orbit until we reach the T m+1

α′ (x, y) = T n+1
α (x, y). The bijectivity

of Tα then implies that there is some k such that T k
α ◦ T k′

α′ (x, y) = T n+1
α (x, y) and hence

T k′

α′ (x, y) = T n+1−k
α (x, y). If k′ < m + 1 then by the positivity of the measure of such points,

we deduce that there are factorizations LJ = L′′
JU

′L′
J and RJ = R′′

JV
′R′

J with L′′
J = R′′

J and
U ′L′

JS
−1 = V ′R′

J . Since α′ < α are close neighbors, there are other values α′ < α′′ < α that
are also close neighbors of α and hence we find that there is an interval J ′ ⊆ J with matching
exponents m′, n′. But, this contradicts the definition of J as the matching interval for its typical
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−1 −2 −3 · · · · · ·

(ℓ0, y−2)

(ℓ′0, y1)

(ℓ3, y2)

(ℓ′2, y3)

(ℓ1, y4)

(ℓ′4, y5)

(r0, y−1)

(r′0, y5)

(r1, y−2)

0

• •

•

••

•

•

•
•

D := Tα(C)

T 2
α (C)

TA−1(D) = Tα′(C)

T 2
α′(C) T 3

α′(C)

T 4
α′(C)

T 5
α′(C)

T 6
α′(C) = T 3

α (C)

Figure 6. Quilting from a close neighbor. Quilting in the setting of ‘small’
α of systems discussed in § 2.7. Here n = 3, α = 0.14, α′ = 0.135, and quilting
given Ωα results in Ωα′ . Domain Ωα, details of which are in [CKS2], not drawn
fully to scale. Integers −1,−2,−3 indicate regions fibering over cylinders of
corresponding ‘simplified digits’. The forward Tα-orbit of C is deleted, while
the forward Tα′ -orbit of C is added, until the “hole” created by excising T 3

α (C)
is “patched” in by T 6

α′(C). See Proposition 4.16.

α, α′. Therefore, we must have that k′ = n + 1 and the disjointness of
⋃m

i=1 T i
α′(C) from Ωα

does hold.
We next claim that the T i

α′(C) are pairwise disjoint. To this end, suppose that T i
α′(C) meets

T j
α′(C) in positive µ-measure for some 1 ≤ i ≤ j ≤ m+1. Then the same is true for T i+m+1−j

α′ (C)
and T m+1

α′ (C) = T n+1
α (C) and arguing as above, we find that i = j. The analogous argument

shows that the T j
α (C) are disjoint.

Finally, due to the disjointness properties which we have shown, it follows that Ωα has locally
constant fibers if and only if Ωα′ does. □

We desire to prove the analog of the above theorem holds also for the setting of ‘large’ α, α′

as defined in § 2.7. In that setting, digit changes other than shifts can occur. However, for close
neighbors, the location of the second type of digit changes is constrained to a single interval and
the digit change is completely explicit; for a hint of this, see Figure 7. In brief, the following is
a mild extension of the previous result, but one which we call on in [CKS2].

Recall that the shift S is given in (15).

Proposition 4.17. Suppose that F = {Tα |α ∈ I} is a family of piecewise Möbius interval
maps and α′ < α are close neighbors with α typical for their common matching interval. Fix M
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(−2, 1)

(1, 1)

(2, 1)

(−2, 2)

· · ·· · · · · · · · · (3, 2) (2, 2)

(1, 2)

(ℓ0, y−3)

(ℓ′0, y1)

(ℓ1, y2)

(r1, y−3)

(r2, y−2) (r′0, y−1)

(r0, y2)

0

1

• •

•
•

••

•

T 2
α (C )

D1 =

Tα(C1 )

Tα(C2 )
Tα′(C1)

TA−1(D1) =

Tα′(C2 )

T 2
α′(C1 )

C2

Figure 7. Quilting for close neighbors, large α. Quilting from Ω3,0.86 to
Ω3,0.855 (not fully to scale). Blocks Bi,j , also denoted by (i, j). The forward
Tα-orbit of C = C1 ∪ C2 is deleted, while the forward Tα′ -orbit of C is added,
until synchronization causes a “hole” excised due to the first of these, but to
be “patched” due to the second (not shown here, but compare with Figure 6 ).
See Proposition 4.17.

such that Tα( ℓ0(α) ) =M · ℓ0(α), and suppose further that ∆Tα,Tα′ is the union of its subsets

∆1 = {x |Tα′(x) = S−1 · Tα(x) } and

∆2 = {x |Tα′(x) =MS−1 · Tα(x) }.
Then Ωα′ can be finitely quilted from Ωα. Furthermore, Ωα has locally constant fibers if and
only if Ωα′ does.

Proof. Let C1, C2 ⊂ Ωα be the sets projecting to ∆1 and ∆2, respectively. The proof of Propo-
sition 4.16 shows that the main interest here is understanding the Tα- and Tα′ -orbits of C2.

As in the previous proof, let the matching interval of α, α′ be J , and let m,n be its matching
exponents. We also again let U = Uα be the Möbius transformation such that ℓm(α) = ULJ ·
ℓ0(α) and V = Vα be such that rn(α) = V RJ · r0(α).

We have that Tα(C1∪C2) is that part of Ωα fibering over [r′0, r0] and hence Tα′(C2) and T 2
α′(C1)

are given by applying TM to non-intersecting subsets of the plane fibering over [ℓ′0, ℓ0]. The
previous proof applies to show that T m+1

α′ (C1) = TULJS−1 ◦Tα(C1) = TV RJ
◦Tα(C1) = T n+1

α (C1).
Since the Tα(C1) and Tα(C2) fiber over [r′0, r0], their initial Tα-orbits are given by the same
sequence of Möbius transformations. Since α′ and α are close neighbors, we have in fact that
T n+1
α (C2) = TV RJ

◦Tα(C2). Since Tα′(C2) = TMS−1Tα(C2), we conclude that T n+1
α (C2) = T m

α′ (C2).
The disjointness of the initial Tα′ -orbits of C1 and C2 follows from the disjointness of Tα(C1) and
Tα(C2). The disjointness of each of these orbits up to the mth and m− 1st step is argued as in
the previous proof, as is the disjointness of these initial orbits with Ωα. □

5. Application: An alternate path to proving properties of Nakada’s
α-continued fractions

We now give a rather technical application of our methods. We use an alternate description
of the planar extension for each Tα given in [KSS] and certain results of [KSS] (not relying on the
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ergodicity of the Tα) about the planar extensions of Nakada’s α-continued fractions, to recover
the following result.

Theorem 5.1. [Luzzi-Marmi 2008, [LM]] For every 0 < α ≤ 1, the Nakada α-continued fraction
is ergodic.

In fact, we rely on Theorem 3.6 and thus find more than just ergodicity. In particular, we
find the following.

Theorem 5.2. For every 0 < α ≤ 1, the dynamical systems of α, α′ are quasi-isomorphic if
and only if they have the same entropy value.

5.1. Review of notation and results of [KSS]. Recall from the introduction and § 2.3 that
both [CT] and [KSS] proved the continuity of the entropy function α 7→ h(Tα) for Nakada’s
α-continued fractions, when 0 < α ≤ 1. The second group of authors created planar extensions

for the Tα in the form of Ωα =
{
T n
α (x, 0) | x ∈ [α− 1, α), n ≥ 0

}
, showed the continuity of the

µ-mass of these, and argued using Abramov’s formula (1) to reach the continuity result. All of
this built upon the earlier result of Luzzi-Marmi [LM] that each of the interval maps is ergodic
with respect to the appropriate measure.

Here we wish to show that the techniques of this paper can be used to proof the ergodicity
of the interval maps. In brief, whereas [KSS] prove by arguments based upon the ergodicity of
Tα that Λα given in (18) below is also a valid expression for the planar extension of Tα, we turn
this around and rather prove that Λα gives a planar extension and then apply Theorem 3.6 to
deduce that Tα is ergodic.

We now briefly review some notation and arguments from [KSS].

Recall from § 2.3 that for ε ∈ {−1, 1} and d ∈ N, we have M(ε:d) =

(
−d ε
1 0

)
and N(ε:d) =(

0 1
ε d

)
. It is easily verified both that exactly the digits (+1 : d) and (−1 : d+1) are such that

the image of the open interval (0, 1) under N(ε:d) meets the open interval (1/(d+ 1), 1/d), and
that for these two digits we have N(ε:d) · [0, 1] = [ 1/(d + 1), 1/d ]. In particular, for each d and
any y we find that

(17) N(+1:d) · y = N(−1:d+1) · (1− y).

Equivalently with W is as in (16), N(+1:d) · y = N(−1:d+1)W
t · y. Note that since W is of

projective order two, this accords with the easily verified identify: M(+1:d) =M(−1:d+1)W .
For α ∈ (0, 1], we let dα(α) be the first α-digit of r0(α) = α and define

Aα = { (−1 : d′) | 2 ≤ d′ ≤ dα(α) + 1} ∪ {(+1 : dα(α))}.

The approach of [KSS] is to list the matching intervals of parameter α by way of certain words
v, the details of which are not necessary for the current application. For each v, [KSS] shows
that the matching interval indexed by v contains a unique ‘atypical’ value, this is α = χv which
is identified by the Tχv

-orbits of the endpoints of Iχv
both reaching x = 0 one step ‘earlier’ than

for the matching for the typical values in this matching interval.
Recall that E is the complement in (0, 1] of the union of the matching intervals of α. For

α ∈ E or α = χv for some v, let L ′
α be the words in Aα which are admissible α-expansions (as

well as the empty word). Then ([KSS], Lemma 7.11) shows that the region, which we rename
for clarity’s sake,

(18) Λα =
⋃

w∈L ′
α

T
|w|
α (∆α(w) )×Nw ·

[
0, 1

dα(α)+1

]
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is a bijectivity domain for Tα. In fact, the lemma is stated for all α, upon making minor
adjustments for the remaining α: Each such ‘remaining’ α is in the same matching interval as

χv for some v, and one defines L ′
α = L ′

χv
and replaces T

|w|
α (∆α(w) ) by the Jα

w of ([KSS], (7.2)
) — this last is only a change in the cases that w has a suffix which consists of a prefix of the
digits of the α-expansion of either α or ℓ0(α) = α− 1 extending beyond where matching occurs
(in a sense, the adjustment is to keep the digits up to one step before matching). To repeat,
their proof (in all cases) relies in part on the ergodicity of the Tα and involves showing that the
bijectivity domain Ωα is equal to what we have denoted Λα. We now turn this around, and for
α ∈ (0, 1) begin with Λα to show ergodicity of Tα and more.

5.2. Proving Λα is a bijectivity domain to conclude Tα is ergodic. We aim to show that
Tα is bijective on Λα (as always, here and throughout, up to µ-measure zero sets).

5.2.1. Surjectivity implies injectivity. Since a Möbius transformation is identified by its values on
three points, and each T(ε:d) is (locally) measure preserving, that surjectivity implies injectivity
can be argued as in ([KSS], Lemma 5.2): In brief, Λα can be partitioned by blocks Da, each
projecting to its cylinder indexed by a, upon each of which Tα is injective and measure preserving;
the sum over the various a of the µ(Tα(Da)) hence equals µ(Λα), which by the surjectivity equals
µ(Tα(Λα)), but this in turn equals the measure of the union of the Tα(Da). Since the sum of the
µ(Tα(Da)) equals the measure of the union of the Tα(Da), injectivity holds up to measure zero.

Certainly the image of Λα under Tα contains the union over the non-empty words w ∈ L ′
α of

the T
|w|
α (∆α(w) )×Nw ·

[
0, 1

dα(α)+1

]
. The main challenge is to show that all of Iα ×

[
0, 1

dα(α)+1

]
is in the image. For this, we introduce notation for the fiber in Λα over a point x: for each
x ∈ Iα, let Φα(x) = {y | (x, y) ∈ Λα}.

5.2.2. Surjectivity follows from fiber symmetry. We show surjectivity of Tα by way of an inter-
esting detail that seems not to have been observed in the literature. The fibers over the cylinders
of the values not in Aα satisfy a certain symmetry property. Note that the matrix W from (16)
acts as x 7→ −1/(x + 1) while its transpose acts by W t · y = 1 − y. We will show that for any
sufficiently large negative x, the sets W t · Φα(x) and Φα(W · x) are disjoint and have union
whose closure is [0, 1]. The reader is encouraged to view the various representations of planar
domains Ωα given in, say, [KSS] to see that this is reasonable. See also Figure 8.

Proposition 5.3. For α ∈ (0, 1) the map Tα is bijective from Λα to itself.

Proof. Fix α. From the definition of Λα, surjectivity onto the complement of Iα ×
[
0, 1

dα(α)+1

]
is immediate.

The proof of ([KSS], Lemma 5.1) shows, based upon the fact that there is an explicit manner to

rewrite Tα-orbits in terms of regular continued fraction T1-orbits, that the rectangle
[
0, 1

dα(α)+1

]2
is contained in the closure of the Tα-orbits of the points contained in this rectangle. The
admissible (ε : d) /∈ Aα are exactly those values such that N(ε:d) · [0, 1] ⊂

[
0, 1

dα(α)+1

]
. Hence,

the y-values here show that each Tα-orbit returns to the rectangle only upon an application of
some T(ε:d) with (ε : d) /∈ Aα.

It follows that for each d ≥ dα(α) + 1, we have that [1/(d+ 1), 1/d] equals the closure of the
union of N(+1:d) ·Φα(x) with N(−1:d+1) ·Φα(x

′) whenever x ∈ ∆α(+1 : d) and x′ ∈ ∆α(−1 : d+1)

are such that Tα sends them to the same value in
[
0, 1

dα(α)+1

]
. By (17) (in the equivalent form

given in the line directly below it), this implies that [0, 1] = W t · Φα(x) ∪ Φα(x′) for each such
pair.

Now, for α ∈ E ([KSS], Lemma 7.9) shows that all of the digits of the expansions of both
α− 1 and α are contained in Aα. Since the only non-full cylinders are associated with prefixes
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0.4
12/29

5/12

.41982 · · ·

1/2

.580 · · ·
7/12

17/29
0.6
g

0ℓ0 ℓ2
||

W · p

r0r2

||
p

r1 ℓ1
||
q

0

1 − g

1

1 + dα(α)

Figure 8. The planar domain Ωα for Nakada’s continued fraction of α = 0.39,
see Figure 1 for the graph of Tα. Marked x-values include: ri = T i

α(α), ℓi =
T i
α(α − 1), 0 ≤ i ≤ 2. Here dα(α) = 3. The y-fibers Φ(x) are constant for x

between W · p and p, and [0, 1] is the closure of Φ(x) ⊔W t ·Φ(x) for each such
x. The proof of Proposition 5.3 refers to p,W · p, q in general cases.

of these expansions, the fibers Φα(x) are constant for all x ∈
[ −1
dα(α)+1 ,

1
dα(α)+1

]
. Therefore,

[0, 1] = W t · Φα(x) ∪ Φα(x′) holds for every pair x ∈ ∆α(+1 : d) and x′ ∈ ∆α(−1 : d + 1) that
are sent by Tα to the same value. That is, the closure of the union of the images of Λα under
the various T(+1:d) and T(−1:d+1) fills out all of Iα ×

[
0, 1

dα(α)+1

]
. Surjectivity holds in this case.

In the case of α of the form χv, ([KSS], Lemma 7.9) shows that the digits of the expansions
of the two endpoints α − 1, α remain in Aα until they match at the value zero. One finds that
the fibers Φα(x) are constant for all x > 0 and also for all x < 0 whose α-digit is at least

(−1 : dα(α)+2). We conclude also in this case that [0, 1] =W t · Φα(x) ∪ Φα(x′) holds for every
pair x, x′ as above, and again the result holds.

In the remaining case, α is in the same matching interval as some χv, and ([KSS], Lemma 7.9)
shows that up to their penultimate digits before matching, digits of the expansions of the two
endpoints α − 1, α remain in Aα; ([KSS], Lemma 6.2) implies that the values exactly before
matching differ by an application of W . Let p denote the larger of these values, thus W · p is
the other value; also let q be the maximum value of the remainder of Tα-orbits of the endpoints
α − 1, α up to these index values. The fibers Φα(x) are constant over each of the intervals
[q,W · p), [W · p, p), [p, α), with respective values Φα(q),Φα(W · p),Φα(p). Directly related to
this is that for any d > 0, points x ∈ ∆α(+1 : d) and x′ ∈ ∆α(−1 : d + 1) are sent by Tα to
the same value if and only if x′ = W · x. (We could have used this in the previous cases, but
preferred to minimize notation.)
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Since p > 0, there exists some d > dα(α) such that p is strictly greater than all values
in ∆α(+1 : d). Hence for all x ∈ ∆α(+1 : d) we have Φα(x) = Φα(W · p) and since also
W · p < W · x also Φα(W · x) = Φα(W · p). Since there are x ∈ ∆α(+1 : d) such that

[0, 1] = Φα(x) ∪W t · Φα(W · x), we find that it is always the case that

(19) [0, 1] = Φα(W · p) ∪W t · Φα(W · p).

From this for any 0 < x < p we find that [0, 1] = Φα(x) ∪W t · Φα(W · x) and in particular for all
d > 0 such that p is strictly greater than all values in ∆α(+1 : d) we have that Iα×[1/d, 1/(d+1)]
is contained in Tα(Λα).

We next claim that

Φα(p) ∪W t · Φα(q) = Φα(W · p) ∪W t · Φα(W · p).

To prove this, recall that [KSS] use k′, k as matching exponents and use E to denote the matrix

which acts as shift by −1, and show that there is an Mv such that T k′−1
α (α−1) =Mv · (α−1) =

MvE · α and T k−1
α (α) =WMvE · α. Thus {p,W · p} = {MvE · α,WMvE · α} and Φα(W · p) is

the union of Φα(q) with one of either Nv · Φα(α− 1) or W tNv(E
−1)t · Φα(α). Similarly, Φα(p)

is the union of Φα(q) with both Nv · Φα(α − 1) and W tNv(E
−1)t · Φα(α). Since W and hence

W t is of projective order two, the claim holds.
Using (19) and the claim, we find for all d > dα(α) that Iα × [1/d, 1/(d+ 1)] is contained in

Tα(Λα). Thus, our proof of surjectivity is complete.
For completeness, we recall that the previous subsubsection outlines a proof showing that

injectivity now follows. □

5.3. Proof of ergodicity. We now complete our proof of Theorem 5.1. It is immediate that
each Λα has positive µ-measure. Since Na ·[0, 1] ⊂ [0, 1] for every possible digit for any given α, it
is clear that Λα ⊂ [α−1, α]× [0, 1]. Therefore, the compact Λα is bounded away from y = −1/x
and has finite vertical fibers. Recall that Lemma 3.4 guarantees that every rational α ∈ (0, 1]
and every α ∈ E is of bounded non-full range. Furthermore, ([KSS] Theorem 5) shows that if
α is an endpoint of a matching interval then both α − 1 and α have periodic Tα-expansions
and thus these maps also are of bounded non-full range. By Theorem 3.6 with Ω = Λα, we
find ergodicity of Tα and the other properties listed in the statement of the theorem. Each of
the remaining α′ ∈ (0, 1) lies in the interior of some matching interval and the density of the
rationals gives that α′ has some typical α as a close neighbor. From Proposition 4.16, combined
with Theorem 4.3 we have that each Tα : Λα → Λα gives the natural extension to the system of
Tα, which is in particular ergodic.

5.4. Proof of quasi-isomorphism class determined by entropy. We now sketch the proof
of Theorem 5.2. We desire to apply the Rychlik result, Theorem 2.6. By the ergodicity result, for
each α ∈ (0, 1] the map Tα has a unique invariant probability measure equivalent to Lebesgue.
Furthermore, each is such that every open subset of Iα contains a full rank m cylinder for some

m ∈ N; hence all of Iα is contained in the Tm
α -image of this open subset. EachM(ε:d) =

(
−d ε
1 0

)
defines a function of x whose derivative has absolute value x−2. Thus, |1/T ′

α| is certainly bounded
on all of Iα for any of the α. By Theorem 2.6, the natural extension of each Tα is Bernoulli.
Therefore, the result holds due to Ornstein’s fundamental result, Theorem 2.4.
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