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ACYCLIC REORIENTATION LATTICES
AND THEIR LATTICE QUOTIENTS

VINCENT PILAUD

ABSTRACT. We prove that the acyclic reorientation poset of a directed acyclic graph D is a
lattice if and only if the transitive reduction of any induced subgraph of D is a forest. We then
show that the acyclic reorientation lattice is always congruence normal, semidistributive (thus
congruence uniform) if and only if D is filled, and distributive if and only if D is a forest. When
the acyclic reorientation lattice is semidistributive, we introduce the ropes of D that encode the
join irreducibles acyclic reorientations and exploit this combinatorial model in three directions.
First, we describe the canonical join and meet representations of acyclic reorientations in terms
of non-crossing rope diagrams. Second, we describe the congruences of the acyclic reorientation
lattice in terms of lower ideals of a natural subrope order. Third, we use Minkowski sums of shard
polytopes of ropes to construct a quotientope for any congruence of the acyclic reorientation

lattice.
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2 VINCENT PILAUD

INTRODUCTION AND OVERVIEW

Fix a (finite and simple) directed graph D:=(V, A). A reorientation of D is a directed graph
with the same underlying undirected graph as D. It can be encoded by its set of reversed arcs
with respect to D. The reorientation lattice Rp is the boolean lattice formed by all reorientations
of D ordered by inclusion of reversed sets (we denote this order by <). Its minimal element is D,
its maximal element is the reverse D of D, its cover relations are given by flipping a single arc,
and it is clearly self-dual under reversing all arcs.

Assume now that D is a (finite and simple) directed acyclic graph. The acyclic reorientation
poset AR p is the subposet of R p induced by acyclic reorientations of D. Its minimal and maximal
elements are still D and D, its cover relations are still given by flipping a single arc, and it is still
self-dual under reversing all arcs. For instance, the acyclic reorientation poset of any directed
forest is a boolean lattice, and the acyclic reorientation poset of a tournament is isomorphic to the
weak order on permutations. Some examples are illustrated in Figure 1.

These acyclic reorientations posets and the underlying acyclic orientation flip graphs have been
extensively studied, in particular for counting [Sta73, Las01], traversing [SSW93, PR95], and
generating [Squ98, BS99] all acyclic orientations of a graph. This paper considers these acyclic
reorientation posets from a lattice theoretic perspective: after characterizing the directed acyclic
graphs D for which ARp is a lattice, we explore lattice properties of AR p, in particular the com-
binatorics and geometry of the lattice quotients of AR p when it turns out to be semidistributive.

Acyclic reorientation lattices. Recall that the transitive reduction (resp. transitive closure) of D
is the directed graph obtained by deleting from (resp. adding to) D all arcs whose endpoints are
connected by a directed path in D of length at least 2. These operations clearly play an important
role for acyclic reorientations: for instance, note that an arc in an acyclic reorientation F of D is
flippable if and only if it belongs to the transitive reduction of E.

In this paper, we say that D is vertebrate when the transitive reduction of any induced subgraph
of D is a forest. For instance, any forest and any tournament is vertebrate. Note that it is
important to check all induced subgraphs of D: there are directed acyclic graphs whose transitive
reduction is a forest, but containing an induced subgraph whose transitive reduction is not a forest.
Our starting observation is the following result illustrated in Figure 1.

Theorem 1. The acyclic reorientation poset ARp is a lattice if and only if D is vertebrate.

weak order lattice boolean lattice another lattice not a lattice

FI1GURE 1. Some acyclic reorientation posets. The first three are lattices while the fourth is not.
The first is the weak order on permutations since D is a tournament, the second is boolean since
D is a forest. The green arcs agree with the reference orientation, while the red arcs are reversed.
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We will actually provide two proofs of Theorem 1. Our first proof in Section 1 will describe
the join and meet operations in the acyclic reorientation lattice of a vertebrate directed acyclic
graph. Our second proof in Section 3.4 will show that the acyclic reorientation lattice of a verte-
brate directed acyclic graph can be obtained from the acyclic reorientation lattice of its transitive
reduction by a sequence of convex doublings in the sense of [Day94].

Restriction maps. The natural restriction maps between acyclic reorientation posets provide an
important tool in some proofs of this paper. Consider two directed acyclic graphs D:=(V, A)
and D’ :=(V, A’) on the same vertex set V with A D A’. Since A D A’, any (acyclic) reorientation
of D restricts to an (acyclic) reorientation of D’. The restriction map ¢p p : ARp — ARp: is
surjective and order preserving. See Figure 2 for examples.

Assuming that both D and D’ are vertebrate, we characterize some relevant lattice properties
of this restriction map ¢p p. We say that D’ is
e weakly pathful in D if along any directed path in D whose endpoints are connected by an
arc in D', at most one arc does not belong to D’,
e pathfulin D if any directed path in D joining the endpoints of an arc in D’ is contained in D',
e strongly pathful in D if any directed path in D joining the endpoints of a directed path
in D' is contained in D’.
Note that strongly pathful implies pathful, and pathful implies weakly pathful, but that both re-
verse implications are wrong. The next statement is proved in Section 2 and illustrated in Figure 2.

Theorem 2. For two vertebrate directed acyclic graphs D= (V, A) and D' :=(V, A’) with A2 A’,

o all fibers of ¢p pr are intervals if and only if D’ is weakly pathful in D,

e ¢p pr is a lattice quotient map if and only if D' is pathful in D,

e ¢p pr restricts to a lattice isomorphism from a lower (or upper) interval of ARp to AR p
if and only if D' is strongly pathful in D.

strongly pathful pathful weakly pathful nothing

FIGURE 2. Restriction maps on acyclic reorientations. The fibers are represented as blue bubbles.
The first subgraph of D is strongly pathful, the second is not strongly pathful but pathful, the
third is not pathful but weakly pathful, the fourth is not weakly pathful.
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Specializing Theorem 2 in the situation when D is a tournament, we obtain in Example 18
a bijection between the directed acyclic graphs D’ whose acyclic reorientation poset AR p: is a

lattice quotient of the weak order on &,, and the non-nesting partitions of [n]:={1,...,n}, which
are counted by the Catalan number C,, := %_H .

Lattice properties. We assume now that D is vertebrate and discuss some properties of its acyclic
reorientation lattice ARp. We refer to Section 3 for the definitions and characterizations of
the classical notions of distributivity, semidistributivity, congruence normality, and congruence
uniformity of lattices. We say that D is filled when for any directed path 7 in D, if the arc joining
the endpoints of 7 belongs to D, then all arcs joining any two vertices of 7 also belong to D. For
instance, any forest and any tournament is filled. The following statement is proved in Section 3
and illustrated in Figure 3.

Theorem 3. When D is vertebrate, the acyclic reorientation lattice ARp is

o distributive if and only if D is a forest,

o semidistributive is and only if D is filled,

o always congruence normal (a.k.a. constructible by convex doubling),

e congruence uniform (a.k.a. constructible by interval doubling) if and only if D is filled.

distributive semidistributive not semidistributive
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FIGURE 3. Some acyclic reorientation lattices. The first is distributive, the second is not distribu-
tive but semidistributive, the third is not semidistributive. They are all congruence normal, hence
the first two are also congruence uniform.

N

Note that our proof of the congruence normality is based on doubling of order convex sets [Day94],
and thus provides an alternative proof of Theorem 1.

The remaining of the paper focusses on the situation when D is vertebrate and filled, which
we abbreviate into skeletal. As for the lattice property, we also provide two proofs of semidis-
tributivity. Our first proof in Section 3.3 will enable us to describe the canonical join and meet
representations in the acyclic reorientation lattice of a skeletal directed acyclic graph. Our second
proof in Section 3.4 will show that the acyclic reorientation lattice of a skeletal directed acyclic
graph can be obtained from the acyclic reorientation lattice of its transitive reduction by a sequence
of interval doublings in the sense of [Day94]. All the results of the remaining sections exploit the
join irreducible elements of the acyclic reorientation lattice AR p to describe all its elements, its
congruences and its quotients when D is skeletal. Our approach is based on a convenient combina-
torial model for join irreducibles of AR p, extending the arcs of N. Reading [Real5], which provides
simple combinatorial descriptions of the compatibility relation and the forcing order among join
irreducibles, as we discuss next.
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Ropes. Assume that D is skeletal, so that its acyclic reorientation poset AR p is a congruence
uniform lattice. Generalizing the arcs of N. Reading [Real5|, we introduce in Section 4.1 some
combinatorial gadgets, that we call the ropes of D, to encode the join (or meet) irreducible elements
of ARp. We use these ropes to describe

e the canonical join complex of ARp (whose faces are the canonical join representations
of ARp) in terms of non-crossing rope diagrams of D in Section 4.2,

e the canonical complex of ARp (whose faces are in bijection with intervals of ARp) in
terms of rope bidiagrams of D in Section 4.3,

e the forcing order among join irreducibles of AR p (whose lower ideals correspond to lattice
quotients of AR p) in terms of subropes in D in Section 5.2.

The subrope order enables us to describe and manipulate all congruences of the acyclic reorienta-
tion lattice AR p. For instance, the minimal and maximal elements of the classes of a congruence =
correspond to non-crossing rope diagrams contained in the subrope ideal associated to =.

Using ropes, we also introduce and explore in Section 5.4 some particularly relevant congru-
ences of ARp: the principal congruences corresponding to principal ideals of the subrope order,
and the coherent congruences generalizing the sylvester [HNT05], Cambrian [Rea06], and per-
mutree [PP18] congruences of the weak order on permutations. For the coherent congruences, we
provide analogues of the classical properties of the sylvester congruence: we describe each coher-
ent congruence as the transitive closure of certain allowed arc flips, we describe the minimal and
maximal acyclic reorientations in the congruence classes in terms of avoidance of certain patterns,
and we discuss the partial acyclic reorientations encoding the elements and the intervals of the
corresponding quotient generalizing [CPP19].

Quotientopes. As originally observed by C. Greene [Gre77] (see also [GZ83, Lem. 7.1]), the Hasse
diagram of the acyclic reorientation poset AR p can be interpreted geometrically as

e the dual graph of the graphical fan Fp, defined by the graphical arrangement of D con-
taining the hyperplanes {x € RY | &, = x, } for all arcs (u,v) € D, oriented in the linear
direction wp = Z(U’U)GA €, — €y, Or

e the graph of the graphical zonotope Z p, defined as the Minkowski sum of all segments [e,,, €]
for all arcs (u,v) of D, oriented in the linear direction wp.

Note that the graphical fan and the graphical zonotope are dual to each other, and that their
codimension is the number of connected components of D. For instance, the graphical arrange-
ments and graphical zonotopes corresponding to the acyclic reorientation posets of Figure 1 are
illustrated in Figures 4 and 5.

FIGURE 4. The graphical arrangements corresponding to the acyclic reorientation posets of Fig-
ure 1. The first is the classical braid arrangement. The regions are labeled by the corresponding
acyclic reorientations. The hyperplanes are colored according to the corresponding arc. The per-
spective is chosen so that the minimal reorientation appears at the bottom of the picture.
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D

FIGURE 5. Linear orientations of the graphs of the graphical zonotopes corresponding to the
acyclic reorientation posets of Figure 1. The first is the classical permutahedron (which has been
rescaled to fit the size of the others). The perspective is chosen so that the minimal reorientation
appears at the bottom of the picture.

Assume now that D is skeletal. As proved by N. Reading [Rea05], any congruence = of the
acyclic reorientation lattice AR p defines a quotient fan, obtained
e either from the graphical fan of D by glueing regions corresponding to acyclic reorientations
of D that belong to the same =-class,
e or from the shards associated to the join irreducibles of AR p uncontracted by =.

In Section 6.2, we construct polytopal realizations of all quotient fans, mimicking the approaches
of [PPR22]. Some of the resulting quotientopes are illustrated in Figure 6. The following statement
is proved in Theorems 56 and 58.

Theorem 4. When D is skeletal, the quotient fan of any congruence of the acyclic reorientation
lattice ARp is the normal fan of

e o Minkowski sum of associahedra of [HLOT], and
o a Minkowski sum of shard polytopes of [PPR22].

We also conjecture that the quotient fan of any coherent congruence of AR p can be realized by
deleting inequalities in the facet description of the graphical zonotope of D, generalizing the classi-
cal constructions of the associahedra and permutreehedra [SS93, Lod04, HLO7, PP18, APR21]. In
fact, for the Cambrian congruences, the quotientope defined by this inequality description seems
to always coincide with the quotientope described as a Minkowski sum of shard polytopes in
Theorem 4. In this paper, we just give a simple proof of this statement for the sylvester congru-
ence, which is illustrated in Figure 6. Note that this contruction fails for congruences beyond the
coherent congruences, as already discussed in [APR21] for congruences of the weak order.

FIGURE 6. The graphical zonotopes (red) and the associahedra (blue) for the acyclic reorientation
lattices of Figure 8. All associahedra are obtained by deleting inequalities in the facet descriptions
of the corresponding graphical zonotope. The perspective is chosen so that the minimal reorien-
tation appears at the bottom of the picture.
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Posets of regions. Finally, we want to discuss the connections of our results to the posets of
regions of arbitrary hyperplane arrangements introduced by A. Bjorner, P. Edelman and G. Ziegler
in [Ede84, BEZ90]. For a central hyperplane arrangement H and a base region B of H, the poset of
regions Ry B is the partial order on all regions of H defined by inclusion of the sets of hyperplanes
separating each region from B. It was proved in [BEZ90] that

o the base region B is simplicial when the poset of regions Ry 5 is a lattice,

o the poset of regions Ry i is a lattice when H is simplicial,

o the poset of regions Ry p is a lattice when # is supersolvable and B is a canonical base

region of H in the sense of [BEZ90].

Moreover, N. Reading showed in [Real6] that the poset of regions Ry  is a congruence uniform
lattice if and only if H is tight with respect to B, meaning that for each region R of H, every pair
of upper (resp. lower) facets of R with respect to B intersects in a codimension 2 face.

In view of these properties, it is relevant to characterize the directed acyclic graphs D whose
graphical arrangements are simplicial, tight, or supersolvable. Recall that a chord of an undi-
rected cycle C is an edge joining two non-consecutive vertices of C. An undirected graph G is
chordal (resp. chordful) if for any cycle C of length at least 4 contained in G, at least one chord
(resp. all chords) of C also belongs to G. The directed graph D is chordal (resp. chordful) if its
underlying undirected graph is. Note that chordful graphs are also known as block graphs in the
literature. Observe that chordful implies skeletal, and skeletal implies chordal, but none of the
reverse directions holds. For instance, any forest and any tournament is chordful, skeletal and
chordal. The first point of the next statement is proved in Proposition 53, the second follows
from Proposition 25, and the last was proved in [Sta07, Coro. 4.10]. It is illustrated in Figure 7.

Theorem 5. The graphical arrangement of D is
o simplicial if and only if D is chordful,
e tight if and only if D is skeletal,
e supersolvable if and only if D is chordal.

simplicial tight but not simplicial supersolvable but not tight not supersolvable

FIGURE 7. Some acyclic reorientation lattices. The first is simplicial, the second is not simplicial
but tight, and the third is not tight but supersolvable, and the last is not supersolvable.

Conversely, it is natural to wonder to what extent the results of this paper can be transported to
the poset of regions of arbitrary hyperplane arrangements. In Section 7, we translate the condition
of Theorem 1 to natural equivalent geometric conditions on the hyperplane arrangement H and
the base region B. We show that these conditions are necessary, but not sufficient, for the poset
of regions Ry p to be a lattice.

Open problems. We close this overview by observing that the paper opens many combinatorial and
geometric research directions. We tried to underline some of the particularly puzzling questions
in Problems 41, 43, 44, 45, 46, 50, 51, 52, 55, 61, 63, 64, 66 and 66.
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1. CHARACTERIZATION OF ACYCLIC REORIENTATION LATTICES

In this section, we show Theorem 1 and provide a characterization of the sets of arcs reversed
in the acyclic reorientations of D and explicit formulas for the join and meet operations in the
case where the acyclic reorientation poset AR p is a lattice.

We start with an obvious necessary condition for AR p to be a lattice. We give a self-contained
proof although it is just a specialization of [BEZ90, Thm. 3.1].

Lemma 6. If ARp is a lattice, then the transitive reduction of D is a forest.

Proof. Assume that the transitive reduction of D contains a (undirected) cycle C. Choose an
arbitrary orientation on C, and let F' denote the forward arcs along C' and B denote the backward
arcs along C. For f € F', denote by Dy the acyclic reorientation of D obtained by reversing f (it
is indeed acyclic since f belongs to the transitive reduction of D). For b € B, denote by Dy, the
acyclic reorientation of D obtained by reversing all arcs but b (it is indeed acyclic since b belongs
to the transitive reduction of D). Note that Dy < D, for any f € F and b € B. Consider now
any reorientation E of D such that Dy < E < Dy for all f € F and b € B. Then all arcs in F
are reversed in E (because Dy < E for all f € F') while none of the arcs in B are reversed in F
(because E < Dy, for all b € B). It follows that C' is a directed cycle in E, so that {D; | f € F}
has no join (and {Dj | b € B} has no meet) in ARp. O

Corollary 7. If ARp is a lattice, then D is vertebrate.

Proof. Fix a subset U C V and let Dy denote the directed subgraph of D induced by U and DY
denote the directed acyclic graph obtained from D by deleting all arcs joining two vertices in U.
Fix an acyclic reorientation £ of DY in which all arcs incident to U are pointing towards U.
Then the set of acyclic reorientations of D that agree with E on DV is an interval of the acyclic
reorientation poset isomorphic to the acyclic reorientation poset of Dy. Since an interval of a
lattice is a lattice, it follows that the transitive reduction of Dy is a forest by Lemma 6. O

We now assume that D is vertebrate and we will show that the acyclic reorientation poset AR p
is a lattice, and describe the join and meet operations.

It is classical that a subset B of ([;L]) is the inversion set of a permutation of [n] if and only
if both B and ([g]) . B are transitive. This generalizes to the following characterization of the
reversed sets of the acyclic reorientations of D. We say that a subset B C A of arcs of D is

e closed if all arcs of A in the transitive closure of B belong to B,
e coclosed if its complement A \ B is closed, and
e biclosed if it is both closed and coclosed.

Proposition 8. If D is vertebrate, a subset B of A is biclosed if and only if its reorientation is acyclic.
Proof. Consider the reorientation E of D obtained by reversing the arcs of B.

If B is not closed, then A contains an arc in the transitive closure of B but not in B. This arc
together with (the reverse of) any path in B joining its endpoints clearly forms a directed cycle
in E. By symmetry, we conclude that if E is acyclic, then B is biclosed.

Conversely, if E is not acyclic, then it contains a directed cycle C with vertex set U. As any
chord in a directed cycle defines a smaller directed cycle, we can assume that C' is induced. As
the subgraph of D induced by U is a (not necessarily directed) cycle, its transitive reduction can
only be a path by assumption on D. In other words, there exists an arc ¢ of C' such that either ¢
is reversed while C' \ {c} is not, or C' \ {c} is reversed while ¢ is not. This ensures that B is not
biclosed, as it is not coclosed in the former case, and not closed in the later case. O

Note that when D is not vertebrate, any set whose reorientation is acyclic is still biclosed, but
the converse fails. For instance, in the last example of Figure 1, each of the two directed paths
from the source to the sink of D forms a biclosed set whose reorientation is not acyclic.

With Proposition 8 at hand, we are now ready to show a refined version of the non-trivial
direction of Theorem 1. For the weak order on permutations, it is well-known that, for any
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permutations 1,...,m of [n], the inversion set of w1 V ...V 7 (resp. of m1 A ... A m) is the
transitive closure (resp. the complement of the transitive closure) of the inversion sets (resp. of the
complements of the inversion sets) of mq,...,m,. This generalizes for vertebrate directed acyclic
graphs as follows.

Theorem 9. If D is vertebrate, then the acyclic reorientation poset is a lattice, where the join

(resp. meet) of a set of acyclic reorientations E1,...,Ey of D is obtained by reversing all arcs
of A that belong (resp. do not belong) to the transitive closure of the arcs reversed (resp. not
reversed) in at least one of the reorientations F1, ..., E}.

Proof. Note that it suffices to prove the statement for the join since the acyclic reorientation poset
is self-dual under reversing all arcs.

Let B denote the transitive closure of the arcs reversed in at least one of the reorienta-
tions Fi, ..., Eg. It is clearly closed, let us show that it is as well coclosed. Assume by means of
contradiction that A contains an arc @’ which is in the transitive closure of A \ B and in B. By
definition, the endpoints u and v of a’ are therefore connected by

e a directed path m = aq,...,ay of arcs in A\ B, and
o adirected path 7’ = af, ..., a} of arcs reversed in at least one of the reorientations Ex, . .., Ej.
Note that we have both £ > 1 since B is closed, and ¢ > 1 since all F1,...,E) are acyclic.

Moreover, we can assume without loss of generality that £ + ¢’ is minimal among all pairs of such
paths sharing their endpoints. This minimality assumption implies that

e these two paths do not share inner vertices, and

e there is no arc from an inner vertex of one path to an inner vertex of the other path.
It follows that all arcs of 7 and 7’ belong to the transitive reduction of the restriction of D to the
union of the vertex sets of m and «’. This contradicts our assumption on D.

We conclude that B is biclosed, and it is by definition the smallest biclosed subset of A containing

all arcs reversed in at least one of the reorientations FEi, ..., Ex. By Proposition 8, we conclude
that the reorientation E obtained by reversing B is the join of the reorientations Fy,..., E,. O
Proof of Theorem 1. One direction is given by Corollary 7, the other by Theorem 9. O

An alternative proof will follow later from Proposition 24. The advantage of the proof of this
section is that it provides explicit descriptions of the join and meet operations in the acyclic
reorientation lattices.

Note that assuming Theorem 1, the characterization of Proposition 8 and the description of
the join and the meet operations of Theorem 9 can be seen as specializations of [BEZ90, Sec. 5].
Here, we used them to establish the characterization of Theorem 1.

2. RESTRICTION MAPS

Consider now two directed acyclic graphs D:=(V, A) and D’:=(V, A’) on the same vertex set
with A D A’. At the moment, we do not require that D and D’ be vertebrate. We consider the
restriction map ¢p,pr : ARp — ARp from acyclic reorientations of D to acyclic reorientations
of D', that we simply denote by ¢ throughout this section as there is no ambiguity. Four different
restriction maps are illustrated in Figure 2. We start by an elementary observation.

Lemma 10. The restriction map ¢ is surjective and order preserving.

Proof. Consider an acyclic reorientation E’ of D’. Since E’ is acyclic, there exists a total order <
on V such that all arcs of E’ are increasing for <. It defines an acyclic reorientation E of D where
all arcs are increasing for <. Clearly, we have ¢(E) = E’. This proves that ¢ is surjective.

Observe now that for an acyclic reorientation E of D, the arcs reversed in ¢(FE) are the arcs
reversed in E that belong to D’. Since the order among acyclic reorientations is defined by the
inclusion of sets of reversed arcs, this immediately implies that ¢ is order preserving. O
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We now consider the fibers of ¢. It immediately follows from Lemma 10 that each fiber F' is
order convex (i.e. z <y < z and z,z € F implies y € F'), but they might fail to be intervals as
illustrated in Figure 2. We now characterize the acyclic reorientations of D’ whose fibers under
the restriction map ¢ admit a minimal or maximal element. A classical result of A. Bjérner and
M. Wachs [BW91] states that the set of linear extensions of a poset < on [n] admits a minimal
(resp. maximal) element under the weak order on permutations if and only if ¢ > k implies i > j
or j =k (resp. i < k implies ¢ < j or j < k) for any 1 < i < j < k <mn. This generalizes as follows.

Proposition 11. Consider an acyclic reorientation E' of D' and let E denote the reorientation
of D where an arc (u,v) is reversed (resp. not reversed) if there is a directed path in E' joining v
to u (resp. u to v). Then the following assertions are equivalent:
(i) the reorientation E is acyclic,
(ii) the fiber of E' under the restriction map ¢ admits a minimal (resp. mazimal) element (then,
this element is F),
(ii1) any directed cycle formed by arcs of E' and of DN\D' contains at least one arc (u,v) of DN\D’
such that there is a directed path in E' joining v to u (resp u to v).

Proof. Note that it suffices to prove the result for minimal elements since the acyclic reorientation
poset is self-dual under reversing all arcs.

(i) = (ii). Observe that E agrees with E' on D’ and that all arcs reversed in E are reversed in
any acyclic reorientation in the fiber of E’. Therefore, if E is acyclic, it is the minimal element of
the fiber of E’ under ¢.

(ii) = (iii). Suppose that the fiber of E’ under ¢ admits a minimal element M. Consider a directed
cycle C formed by arcs of E' and of D\ D’. Let a:= (u,v) be an arc of C which belongs to D~ D’
so that there is no directed path in E’ joining v to u. Consider the reorientation E! of the directed
acyclic graph D!, := (V, A’ U {a}) that agrees with E’ on A’ and where a is not reversed. Since E’
is acyclic and there is no directed path in E’ joining v to u, the reorientation E!, of D! is acyclic,
so that it can be completed into an acyclic reorientation E, of D by Lemma 10. By definition, we
have ¢(F,) = E’ and a is not reversed in E,. Since M is the minimal element of the fiber of E’
under ¢, we have M < F,, so that the arc a is not reversed in M. Since M is acyclic, C' contains
at least one arc (u,v) of D~ D’ such that there is a directed path in E’ joining v to u.

(iii) = (i). Assume that E contains a cycle C'. Up to replacing each reversed arc of C' by a directed
path in E’ joining its endpoints, we can assume that all arcs of C belong to E’ or to D ~ D'.
Each arc (u,v) of C'in D \ D’ is a non-reversed arc of F so that there is no directed path in E’
joining v to u. Therefore, £’ does not fulfill (iii). O

Conversely, observe that any interval can be seen as the fiber of a well-chosen restriction map.
For two acyclic reorientations E and F' of D, we denote by EN F the directed acyclic graph whose
arcs are the common arcs of £ and F.

Proposition 12. Any interval [EY, EN:= {E € ARp | EY < E < E"} of AR p is the fiber of EV N E/
(resp. of the transitive reduction of EV N E™) under the restriction map to the edges of D that
appear in any direcction in EY N E" (resp. in the transitive reduction of EY N E")

Proof. Observe that an arc is reversed in EV (resp. unreversed in E”) if and only if it is reversed
(resp. unreversed) in all E € [EY, E"] if and only if it belongs to and is reversed (resp. unreversed)
in EVNE”®. The result follows for EVNE”. It also holds for the transitive reduction of EVYNE” since
the fiber of an acyclic reorientation and the fiber of its transitive reduction always coincide. [

In the next statements, we say that D’ is

e weakly balanced in D if for any simple cycle C in D, if all backward arcs along C belong
to D', then either all or all but one forward arcs along C belong to D’,

e balanced in D if for any simple cycle C in D, if all backward arcs along C' belong to D’
and C has at least two forward arcs, then all forward arcs along C' also belong to D’,

e strongly balanced in D if for any simple cycle C' in D, if all backward arcs along C belong
to D', then all forwards arcs along C also belong to D’.
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Note that strongly balanced implies balanced and balanced implies weakly balanced, but both
reverse implications are wrong.

We now characterize the subgraphs D’ for which all fibers under the restriction map ¢ are
intervals.

Proposition 13. The fibers of ¢ are all intervals if and only if D' is weakly balanced in D.

Proof. Note that since the acyclic reorientation poset is self-dual under reversing all arcs, all fibers
of ¢ are intervals if and only if all fibers of ¢ admit a minimal element. We thus focus on minimal
elements below.

Assume that there is a simple cycle C in D with all backward arcs in D’, but with two forward
arcs a and b not in D’. By Lemma 10, there exists an acyclic reorientation E’ of D’ where all
backward arcs along C' are reversed, none of the forward arcs along C' are reversed, and all other
arcs incident to C' are pointing toward C. The cycle C' is formed by arcs of E’ and of D \. D’ and
contains no arc (u,v) of D~ D’ such that there is a directed path in E’ joining v to u (because a
and b are both in D ~\ D’ and all arcs in E’ incident to C' are pointing toward C'). We conclude
by Proposition 11 that the fiber of E’ under ¢ has no minimal element.

Conversely, assume that there is an acyclic reorientation E’ of D’ whose fiber under ¢ has no
minimal element. By Proposition 11, there is a directed cycle C formed by arcs of E’ and of D~ D’
which contains no arc (u,v) of D~ D’ such that there is a directed path in E’ joining v to u The
backward arcs along C all belong to D’ (since they do not belong to D~ D’), and we claim that C
contains at least two arcs of D \. D’. Indeed,

e if C contains no arc in D \ D', then C'is a directed cycle in E’, contradicting the acyclic-
ity of E’,
e if C contains only one arc a:=(u,v) in D\ D', then C \ {a} forms a directed path in E’
joining v to wu, contradicting our assumption on C.
We conclude that C' is a simple cycle with all backward arcs in D’ and at least two forward arcs
not in D’. O

Assume from now on that D’ is weakly balanced in D. We denote by = 1 (resp. 7') the map
from ARp to ARp sending an acyclic reorientation F to the minimal (resp. maximal) acyclic
reorientation F' such that ¢(F) = ¢(F).

Proposition 14. The maps 7 and 7T are order preserving if and only if D' is balanced in D.

Proof. Note that it suffices to prove the statement for 7, since the acyclic reorientation poset is
self-dual under reversing all arcs.

Assume that there is a simple cycle C' in D with all backward arcs in D’ and at least two
forward arcs a in D’ and b not in D’. Note that since D’ is weakly balanced in D, all forward arcs
along C' except b belong to D’. By Lemma 10, there exists an acyclic reorientation E of D where
all backward arcs along C' are reversed, none of the forward arcs along C are reversed except b,
and all other arcs incident to C' are pointing toward C. Let F' be the acyclic reorientation of D
obtained by reversing a (it is indeed acyclic as C' is not a directed cycle in F, and all arcs incident
to C' are pointing toward C'). By Proposition 11, b is reversed in 7| (E) but not in 7 (F). We
conclude that 7, is not order preserving, since E < F' by construction, while 7 (E) £ m (F )
because of b.

Conversely, assume that D’ is balanced in D and consider two acyclic reorientations F and F
of D such that F < F. Denoting E':=¢(FE) and F':=¢(F), we have E’ < F' since ¢ is order
preserving by Lemma 10. Consider an arc (u,v) reversed in 7| (E). If (u,v) belongs to D', then
it is reversed in ¢(m (E)) = E', therefore as £/ < I, it is reversed in I’ = ¢ (7 (F)) and thus
in m (F). If (u,v) does not belong to D’, then there is a directed path 7 joining v to v in E’ by
Proposition 11. Moreover, since D’ is balanced in D and (u,v) ¢ D’, all arcs along 7 are reversed
in E'. Since E’ < F’, all arcs along 7 are also reversed in F’, so that (u,v) is also reversed in F
by Proposition 11. We conclude that all arcs reversed in 7| (E) are also reversed in 7| (F), so
that 7 (E) < 7| (F). We conclude that 7 is order preserving.
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We now characterize the subgraphs D’ for which ARps can be seen as a lower (or upper)
interval of AR p, i.e. of the form [D, E] (resp [E, D]) for some E € AR p. This will be useful when
studying the congruences of congruence uniform acyclic reorientation lattices in Section 5.

Proposition 15. The map ¢ restricts to a poset isomorphism from a lower (or upper) interval
of ARp to ARp: if and only if D’ is strongly balanced in D.

Proof. Assume first that D’ is strongly balanced in D. Let ¢ : ARp: — ARp denote the map
sending an acyclic reorientation E’ of D’ to the acyclic reorientation of D whose reversed arcs are
precisely the reversed arcs of D’ (it is indeed acyclic, otherwise it would contain a simple cycle
whose backward arcs all belong to D’ and whose forward arcs cannot all belong to D’ by acyclicity
of E’, contradicting the assumption on D’). Tt is clear that ¢ and v are inverse poset isomorphisms
from the lower interval [D,(D")] of ARp to ARpr.

Conversely, assume that ¢ restricts to a poset isomorphism from some lower interval I of AR p
to AR pr. Assume that some arc a of D~ D’ is reversed in an acyclic reorientation E of I. Consider
a saturated chain D = Fy <--- < F, = F'in ARp. Thereis ¢ € [p] such that the arc a is flipped
from F;_q to F;. Since a ¢ D’, we obtain ¢(F;_1) = ¢(F;) while F;_; and F; both belong to I,
contradicting our assumption on ¢. We conclude that no arc of D ~\. D’ can be reversed in an
acyclic reorientation of E. Assume now that there is a cycle C' in D such that all backward arcs,
but not all forward arcs, along C belong to D’. Let E’ be an acyclic reorientation of D’ that agrees
with C' on D’ (it indeed exists by Lemma 10 since C' is not completely in D’). Then any acyclic
reorientation E of D in the fiber of E' under ¢ must have at least one arc of C' \ D’ reversed.
Therefore, the fiber of E’ cannot meet I, a contradiction. O

We are finally ready to prove Theorem 2, as a specialization of Propositions 13 to 15 in
the case when D and D’ are vertebrate. Recall that a map ¢ : L — L’ between two lat-
tices (L, <,A,V) and (L', <' A, V') is a lattice map if it respects the join and meet operations,
that is ¢(z A y) = ¢(x) N @(y) and ¢(z V y) = ¢(x) V' ¢(y) for all x,y € L. When it is surjective,
it is lattice quotient map, and L’ is a lattice quotient of L. The following characterization of lattice
maps is classical.

Proposition 16. A map ¢ : L — L’ is a lattice map if and only if
e the fibers of ¢ are intervals of L, and
e the map 7, (resp. 71 ) that send an element x of L to the minimal (resp. mazimal) element y
with ¢(x) = ¢(y) is order preserving.

Proof of Theorem 2. It follows from Propositions 13 to 16, and the immediate observation that the
(weakly / strongly) balanced condition is equivalent to the (weakly / strongly) pathful condition
when D is vertebrate. (]

Example 17. Assume that D’ is a forest. As already mentioned in the introduction, the acyclic
reorientation poset AR pr is then a boolean lattice. The restriction map ¢ is a lattice map if and
only if D is vertebrate and D’ is a subgraph of the transitive reduction of D. Therefore, for any
vertebrate directed acyclic graph D, any subgraph D’ of the transitive reduction of D defines a
boolean lattice quotient AR of ARp.

Example 18. Assume that D is a tournament, and label the vertices of D by [n] so that (4, j) € D for
all 1 <14 < j <n. As already mentioned in the introduction, the acyclic reorientation poset AR p
is then isomorphic to the classical weak order on permutations. The restriction map ¢ is a lattice
map (in other words, AR p- is a lattice quotient of the weak order) if and only if (¢, ¢) € D’ implies
(j,k) e D' forany 1 <i < j < k < ¢ <n. In other words, D’ is a lower ideal for the nesting order
defined by (i,¢) < (j,k) for 1 <4 < j < k < ¢ < n. Representing this ideal by its generators, we
obtain a bijection between acyclic reorientation posets that are lattice quotients of the weak order

on &,, and non-nested partitions of [n], which are counted by the Catalan number C,, :== %H (2;1)

Note that the same graphs already appeared in the work of E. Bernard and T. McConville [BM21]
concerning lattice maps in the context of graph associahedra. In particular, when D’ is a lower
ideal of the nesting order, there is a triangle of lattice morphisms from the weak order, through
the tubing order on D’ [CD06, BM21], to the acyclic reorientation lattice of D’.
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3. PROPERTIES OF ACYCLIC REORIENTATION LATTICES

In this section, we assume that D is vertebrate and we study classical lattice properties of
the acyclic reorientation lattice ARp, illustrated in Figure 3. We refer to [GW16, GW14] for
a detailed reference on these lattice properties and just briefly recall the needed definitions and
characterizations of these properties.

3.1. Join and meet irreducibles. Recall first that an element z of a lattice L is join (resp. meet)
irreducible if it covers (resp. is covered by) a unique element of L denoted z, (resp. z*). For
instance, the join (resp. meet) irreducibles of the boolean lattice are the singletons (resp. comple-
ments of singletons), and the join (resp. meet) irreducibles in the weak order on permutations are
the permutations with a single descent (resp. ascent). These examples generalize as follows.

Proposition 19. The following assertions are equivalent for an acyclic reorientation E of D:
(i) E is join (resp. meet) irreducible in ARp,
(ii) the transitive reduction of E contains a single reversed (resp. not reversed) arc,
(ii1) there is an arc a of D such that E is a minimal (resp. mazimal) element of the fiber of the
reverse of a (resp. of a) under the restriction map ¢, from D to {a}.

Proof. Note that it suffices to prove the statement for join irreducibles since the acyclic reorienta-
tion poset is self-dual under reversing all arcs.

(i) & (ii). We already mentioned in the introduction that an arc is flippable in E if and only if it
belongs to the transitive reduction of E. Therefore, E is join irreducible if and only if exactly one
such arc is reversed.

(ii) & (iii). Flipping any arc b distinct from a in the transitive reduction of E yields an acyclic
reorientation F' of D in the same fiber under ¢,, with E > F if and only if b is reversed in F.
Therefore, a is the only reversed arc in the transitive reduction of F if and only if E is a minimal
element of the fiber of the reverse of a under ¢,. O

Corollary 20. The number of join (resp. meet) irreducible elements of ARp is at least |A.

Note that Proposition 19 and Corollary 20 hold for any directed acyclic graph D. We will state
a much more precise count of join and meet irreducibles of ARp when D is skeletal using ropes
in Section 4.1.

3.2. Distributivity. A finite lattice (L, <,A,V) is distributive if z V (y A 2) = (x V y) A (x V 2)
(or equivalently z A (y V z) = (x Ay) V (z A 2)) for any x,y,2 € L. The fundamental theorem
for distributive lattices affirms that L is distributive if and only if it is isomorphic to the lattice
of lower ideals of its join irreducible poset (or equivalently of upper ideals of its meet irreducible
poset). The following statement says that an acyclic reorientation lattice is distributive if and only
if it is a boolean lattice.

Proposition 21. The acyclic reorientation poset AR p is a distributive lattice if and only if D is a
forest.

Proof. If D is a forest, all reorientations of D are acyclic, so that ARp is a boolean lattice.

Conversely, assume that D is not a forest. Since D is vertebrate, its transitive reduction R is
a forest, so that there exists a directed path ay,...,as (with £ > 2) in R and an arc a in D with
the same endpoints. Let E denote the acyclic reorientation of D obtained by reversing all arcs
except ag. For i € [¢], denote by F; the acyclic reorientation of D obtained by reversing only the
arc a;. Observe that
e all the arcs a; are reversed in Vie[é] F;, so that all the arcs in their transitive closure are
reversed in \/z‘e[Z] F;. By Theorem 9, we obtain that a is reversed in E A \/z‘e[f] F;.
e ENF; =F;forié€ [{—1] while and EAF, = D, so that Vg (EAF;) = V;cp_q) IS By
Theorem 9, we obtain that a is not reversed in \/;c(, (E'A F;).
Therefore, EA V(g Fi # Viepq(E A Fi) which shows that AR p is not distributive. O
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3.3. Semidistributivity and canonical representations. A finite lattice (L, <, A, V) is join semidis-
tributive if x Vy = x V z implies ¢ V (y A z) = z V y for any z,y,z € L. Equivalently, L is
join semidistributive if for any cover relation x <y in L, the set Ky (z,y):={z€ L|axVz=y}
has a unique minimal element kv (z,y). Note that ky(z,y) is join irreducible. In particular we
define kv (m):=ky(m,m*) for a meet irreducible m of L. The meet semidistributivity and the
maps Ka, kn and ka are defined dually. A lattice L is semidistributive if it is both join and
meet semidistributive. In this case, the maps xy and k. are inverse bijections between the meet
irreducible and the join irreducible elements of L.

Our next statement characterizes semidistributivity for acyclic reorientation lattices. Recall
that D is filled when the following equivalent conditions are fulfilled:

e for any directed path 7 in D, if the arc joining the endpoints of 7 belongs to D, then all
arcs joining any two vertices of 7 also belong to D,

e the transitive support of any arc a of D induces a tournament in D,

e for any arc (u,v) in D and any vertex w in the transitive support of (u,v) minus {u,v},
both arcs (u,w) and (w,v) also belong to D,

where the transitive support of an arc a of D is the set of vertices of D that appear along a
directed path in D joining the endpoints of a (or equivalently along the directed path in the
transitive reduction of D joining the endpoints of a). From now on, we abbreviate vertebrate and
filled by skeletal. Note that chordful (meaning that any cycle induces a clique) implies skeletal,
and that skeletal implies chordal (meaning that there is no induced cycle of length at least 4),
but that both reverse implications are wrong. In particular, any forest and any tournament is
skeletal. In fact, it is not difficult to check that the skeletal directed acyclic graphs are precisely
the directed forests on which some directed paths are replaced by tournaments. Some examples of
skeletal directed acyclic graphs and their acyclic reorientation lattices are illustrated in Figure 8.

Proposition 22. The acyclic reorientation poset AR p is a semidistributive lattice if and only if D
is skeletal.

Proof. Since we focus in this paper on self-dual lattices, the notions of join semidistributivity, meet
semidistributivity and semidistributivity coincide. We focus here on join semidistributivity.

Assume that there is a directed path with vertices vy, ..., vy in the transitive reduction of D
such that (vo,v¢) € D but there is 0 < ¢ < j < £ such that (v;,v;) ¢ D. Restricting the path,
we can assume that (vg,vs) € D while (vo,v—1) ¢ D or (v1,v¢) ¢ D, say the later for instance.
Let X denote the acyclic reorientation of D obtained by reversing all arcs except the arcs (vg, vy)
that belong to D (in particular the arc (vg, v¢)), and let Y denote the reorientation of D obtained
from X by reversing (vg,v¢). For i € [ — 1], let E; denote the reorientation of D that agrees
with Y except on the arc a; = (v;—1, v;).

We claim that F; is acyclic. Assume by means of contradiction that E; contains a directed
cycle C. Since a; is in the transitive reduction of D, it cannot be the only arc of D in C.
Therefore, one of the arcs (vk,ve) is also in C, so that (vo,v) is also reversed in C. Since k # 1
as we assumed that (vi,ve) ¢ D, the arc a; does not suffice to close C.

Consider now E := /\ie[e—l] E;. Since the arc a; and a; are not reversed in F;, we obtain that
none of the arcs a; are reversed in E, so that (vg,ve) is not reversed in F, hence X < E. We
conclude that the set {F € ARp | X V F = Y} contains all E; but not E, so that it has no minimal
element.

Assume now that D is filled and consider a cover relation X <Y in ARp. Let a denote the
arc reversed from X to Y. We say that an arc of D is forced if it is the only arc reversed in Y’
along a directed path in D joining the endpoints of a. In other words, an arc of D is forced if its
endpoints are connected by a directed path in Y where a is the only reversed arc. Note that by
definition, the arc a is forced while the arcs not reversed in Y are not forced.

Our assumption that D is filled implies that any directed path in D joining the endpoints of a
contains at least one forced arc. Indeed, let vy, ..., v, denote the vertices along such a path. Since
a = (vo,v¢) and D is filled, all arcs (v;,v;) with 0 < ¢ < j < £ belong to D. Let k € [{] be
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FIGURE 8. Three semidistributive acyclic reorientation lattices (top) and their canonical join
complexes (bottom). The rightmost lattice is isomorphic to the weak order on permutations.

minimal such that the arc (vg, v) is reversed in Y. Then neither (vg,v;—1) (by minimality of k)
nor (vg,ve) (since X is acyclic and contains (vg,vo) and (vg, v¢)) are reversed in Y. This shows
that the arc (vg_1,vy) is forced.

Let E be the reorientation of D obtained by reversing all forced arcs. We claim that

e F is acyclic. Otherwise, it contains a directed cycle C'. The arcs in E are either in D or
forced. Replacing each forced arc in C' by a directed path in Y where a is the only reversed
arc, and taking eventually a subcycle if the result is not simple, we can assume that C is
formed by the arc a together with a directed path of arcs in D joining the endpoints of a.
By definition of F, none of the arcs along this path is forced, contradicting our earlier
observation.

e X VFE =Y. Indeed, since the arcs not reversed in Y are not forced, they are also not
reversed in E so that £ <Y. Moreover, since a is forced, it is reversed in F, so that £ £ X.
Therefore, X VE =Y.

e F is smaller than any F' € ARp such that X V F =Y. Indeed, if X V FF = Y, then
all arcs not reversed in Y are not reversed in F' (because F' < Y), so that a is reversed
in F' (because F £ X), so that the forced arcs are reversed in F' (because F is acyclic).
Therefore, all arcs reversed in F are reversed in F, so that £ < F.

This shows that E is the unique minimal element of the set {F € ARp | X V F =Y}, which
proves that AR p is join semidistributive, thus semidistributive (by self-duality). O

Semidistributivity enables us to consider canonical representations. A join representation
of x € L is a subset J C L such that # = \/ J. Such a representation is irredundant if x # \/ J’ for
any strict subset J' C J. The irredundant join representations of an element x € L are ordered
by containement of the lower ideals of their elements, i.e. J < J' if and only if for any y € J
there exists ¢y’ € J’ such that y < 3’ in L. The canonical join representation of x is the minimal
irredundant join representation of x for this order when it exists. Its elements are the canonical
joinands of x. The canonical meet representations and the canonical meetands are defined dually.
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A classical result affirms that a finite lattice L is join (resp. meet) semidistributive if and only if
any element of L admits a canonical join (resp. meet) representation [FN95, Thm. 2.24]. Moreover,
in a join (resp. meet) semidistributive lattice, the canonical join (resp. meet) representation of y € L
is given by

y=\ kv(z,y)  (resp. y= A kaly,2))
Ty y<z
where ky(z,y) is the minimal element of Ky (z,y):={z € L|xV 2=y} (resp. kr(y,z) is the
maximal element of Kn(y,z):={z € L|xAy=2z}).

Combining this description with Propositions 19 and 22, we obtain the join (resp. meet) canon-
ical representations in the acyclic reorientation lattice, generalizing the description of [Real5] for
the weak order. An alternative description is presented later in Corollary 30 in terms of ropes.

Corollary 23. Assume that D is skeletal. The canonical join (resp. meet) representation of an
acyclic reorientation E of D is given by E =\ E, (resp. E =\, E,) where
e a runs over all arcs of D reversed (resp. not reversed) in the transitive reduction of E,
e E, is the acyclic reorientation of D where an arc is reversed (resp. not reversed) if and
only if it is the only arc reversed (resp. not reversed) in E along a directed path in D
joining the endpoints of a.

The canonical join complex of a join semidistributive lattice L is the simplicial complex on
join irreducible elements of L whose faces are the canonical join representations of the elements
of L. For instance, Figure 8 shows the canonical join complexes for some acyclic reorientation
lattices. It was proved in [Barl9] that this complex is flag (i.e. its minimal non-faces are edges,
or equivalently it is the clique complex of its graph) if and only if L is semidistributive. The
canonical meet complex is defined dually. The canonical complex of a semidistributive lattice L
is the simplicial complex on join irreducible elements and meet irreducible elements of L whose
faces are of the form J U M where J is a canonical join representation, M is a canonical meet
representation, and \/ J < A M. It was proved in [AP23] that this complex is again flag. Note that
the canonical join (resp. meet) complex encodes the elements of L, while the canonical complex
encodes the intervals of L. We will describe the canonical join (resp. meet) complex of ARp in
Corollary 31 using non-crossing rope diagrams generalizing [Real5], and the canonical complex
of ARp in Corollary 34 using rope bidiagrams generalizing [AP23].

3.4. Congruence normality and uniformity. Recall that a congruence of a finite lattice (L, <, A, V)
is an equivalence relation on L that respects meets and joins, that is x = 2’ and y = v’ implies
xVy = 2'Vy' and xAy = 2’ Ay'. The lattice quotient L/= is the lattice structure on the congruence
classes of =, where for any two congruence classes X and Y, the order is given by X <Y if and
only if # <y for some representatives x € X and y € Y, and the join X VY (resp. meet X AY) is
the congruence class of x Vy (resp.  Ay) for any representatives € X and y € Y. In other words,
the projection map sending an element of L to its congruence class is a lattice map. Moreover,
the lattice quotient L/= is isomorphic to the subposet of L induced by the minimal elements in
their congruence classes.

The set con(L) of all congruences of L, ordered by refinement, forms itself a distributive lattice
where the meet is the intersection of relations and the join is the transitive closure of union of
relations. For any z,y € L, there is a unique minimal congruence con(x,y) in which = y. For
a join irreducible element j of L (covering a single element j,), the congruence con(jy, j) is join
irreducible in the congruence lattice con(L). Similarly, for any meet irreducible element m of L,
the congruence con(m, m*) is meet irreducible in con(L). The lattice L is called

e congruence normal if con(j.,j) # con(m, m*) for any join irreducible j and meet irre-
ducible m such that 7 < m,

e congruence uniform if the map j — con(j.,j) (resp. m — con(m,m*)) is a bijection
between the join (resp. meet) irreducible elements of L and that of con(L).

A lattice is congruence uniform if and only if it is congruence normal and semidistributive.
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FIGURE 9. A sequence of order convex doublings in a lattice. The two blue segments in the first
lattice are doubled into four blue segments connected by four green segments in the second lattice,
and the four red segments in the second lattice are doubled into height red segments connected
by six orange segments in the third lattice. The first step could be decomposed into two interval
doublings, the second cannot.

In the sequel, we will use an alternative characterization of congruence normality and congruence
uniformity in terms of convex and interval doublings in the sense of [Day94]. Given a poset P and
a subset X of P, the doubling of X in P is the poset P[X] on (P~ X)U (X x {0,1}) defined by:
a<bin P[X]ifa,b¢ X and a <bin P,

(a,i) <bin P[X]ifae X,b¢ X,i€{0,1},and a <bin P,

a<(bj)in PX]ifa¢ X,be X, jec{0,1},and a <bin P,

(a,i) < (b,5) in P[X]ifa,be X,4,j € {0,1}, and a < b in P and i < j.

This construction is illustrated in Figure 9. It was observed that if L is a lattice and C' C L is
order convex (i.e. x <y < z and z,z € C implies y € C), then L[C] is again a lattice. A lattice is
congruence normal (resp. uniform) if and only if it can be obtained from a distributive lattice by
a sequence of doublings of order convex sets (resp. of intervals).

Proposition 24. The acyclic reorientation poset ARp is a congruence normal lattice for any ver-
tebrate directed acyclic graph D.

Proof. Order the arcs of D by a < b if there is a directed path in D containing a joining
the endpoints of b. The minimal elements of < are the arcs of the transitive reduction R
of D. Choose an arbitrary order ai,...,a; on the arcs of D \ R so that a; < a; for ¢ < j.
Let R = Dy, D1, ..., Dy = D be the directed subgraphs of D obtained by adding the arcs aq, ..., ay
one by one.

Let ¢ € [¢]. Let X; (resp. Y;) denote the set of acyclic reorientations of D;_; which can be
completed into an acyclic reorientation of D; by adding a; (resp. the reverse of a;), and de-
note Z; = X; NY;. Clearly, the acyclic reorientation poset ARp, is isomorphic to the doubling
of Z; in ARp,_,. Moreover, we claim that Z, is order convex in D, ;. This immediately follows
from the fact that X; (resp. ;) is a lower (resp. upper) ideal of ARp,_,.

To prove this fact, it suffices by symmetry to show that Y; is an upper ideal. Consider an acyclic
reorientation E of D;_; and the reorientation F' of D; that agrees with F on D;_; and where a;
is reversed. If E does not belong to Y;, then F' contains a cycle C. We can assume that C is
induced (as any chord in a directed cycle defines a smaller directed cycle) and we know that C
contains a; (because E is acyclic). Since D is vertebrate, there exists an arc ¢ of C such that
either ¢ is reversed in F' while C' \ {c} is not, or C \ {c} is reversed in F while ¢ is not. In the
former case, we have ¢ = a; (because a; is reversed and belongs to C') and the arcs of C' \ {c} are
not reversed in E. It follows that for any E’ < E, the arcs of C' ~\ {c} are not reversed in E’ so
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Fi1GURE 10. Doubling convex sets in acyclic reorientation posets. See Figure 9 for the explanation
of the colors of the cover relations.

that E’ cannot belong to Y;. In the later case, we would have a; < ¢ contradicting our assumption
that ap < a; for h < i. We conclude that E ¢ Y; and E' < F implies E’ ¢ Y;, so that Y; is an
upper ideal of ARp,_,.

To sum up, we obtained a sequence of lattices ARr = ARp,, ARp,,..., ARp, = ARp, where
each ARp, is isomorphic to the doubling of the order convex set Z; in ARp, ,. Since R is a
forest, AR R is distributive, so that AR p is congruence normal. Such a sequence is illustrated in
Figure 10. ]

Another approach to prove Proposition 24 is to

e order the arcs of D by inclusion of their transitive supports,
e label each cover relation F < E’ in ARp by the arc of D flipped from FE to E’.

We invite the reader to check that this defines a CN-labeling of ARp in the sense of N. Read-
ing [Rea03, Thm. 4], and thus implies that AR p is congruence normal. The advantage of describing
an explicit sequence of order convex doubling is that our proof of Proposition 24 actually provides
an alternative proof of Theorem 1.

We now switch to congruence uniformity. The following statement is a direct consequence of
Propositions 22 and 24. However, we sketch an independent proof based on interval doublings,
which thus provides an alternative proof of Proposition 22.

Proposition 25. The acyclic reorientation poset ARp is a congruence uniform lattice if and only
if D is skeletal.

Proof. Consider the sequence of directed acyclic graphs D; constructed in the proof of Proposi-
tion 24. We claim that, while the convex sets Z; are not always intervals, they can be partitioned
into intervals Z; = I} U --- U I*. Doubling separately these intervals IP thus shows that ARp is
congruence uniform.

To see the claim, consider the arc a; added at a given step i € [¢]. Since D is skeletal, the
transitive reduction of a; induces a tournament K; in D. Since we are adding the arcs of D \ R
in an order compatible with <, all arcs of K; belong to D;. Partition the acyclic reorientations
of Z; according to their restriction to K; \ {a;}. Since K; \ {a;} is clearly weakly pathful in D;
(it is actually strongly pathful), this partitions Z; into intervals of AR p, , by Theorem 2. O
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4. ROPE DIAGRAMS

Throughout this section, we assume that D is skeletal, so that the acyclic reorientation poset AR p
is a congruence uniform lattice by Proposition 25. We introduce ropes and non-crossing rope dia-
grams, generalizing the work of N. Reading in [Real5] on arcs and non-crossing arc diagrams. In
our setting, we prefer the word “rope” rather than “arc” to avoid the possible confusions with the
arcs of the directed graphs.

4.1. Ropes and irreducibles. A rope of D is a quadruple (u,v, s/, A) where (u,v) is an arc of D
and 7 U A is a partition of the transitive support of (u,v) minus {u,v} (or equivalently since D
is filled, the vertices w so that both (u,w) and (w,v) belong to D).

Lemma 26. Assume that D is skeletal. Then the ropes of D are

(i) counted by Y. 4 21502 where ts(a) denotes the size of the transitive support of a in D,
(i) in bijection with the cliques of D with at least 2 vertices.

Proof. First, (i) is immediate since a rope of D is given by an arc (u,v) of D together with a
subset A of the transitive support of (u,v) in D minus {u,v}. For (ii), note that
e cach rope (u,v,57,A) defines a clique induced by A U {u, v},
e cach clique K defines a rope (u,v,57,A) where v and v are the source and target of K,
and A (resp. /) are the vertices of the transitive support of (u, v) which belong (resp. do
not belong) to K. O

For an acyclic reorientation FE of D and an arc (u,v) € D, we set
VE,U:: {weV | (u,w) € D\ FE and (w,v) € DNE}
and AL, ={weV|(u,w) € DNE and (w,v) € D\ E},
and we define
P = (0,70 0 A

We need the following two elementary properties of the sets V{i » and AE v-

Lemma 27. The sets VE,U and A{iv fulfill the following properties:

(i) for any distinct vertices w € 75, U{u,v} and w' € AT, U{u,v}, there is an arc (w,w’)
in E, except if (w,w’) = (u,v) ¢ E orif (w,w') = (v,u) ¢ E,
(ii) if (u,v) or (v,u) appears in the transitive reduction of E, then pf,v is a rope of D.

Proof. For the first point, observe that E contains arcs from any vertex of VE, » to both u and v,
and from both u and v to any vertex of Af, . Therefore, except when (w,w’) = (u,v) ¢ E or
if (w,w’) = (v,u) ¢ E, there is a directed path in F joining w to w’. Since D is filled, and both w
and w’ belong to the transitive support of (u,v), it follows that (w,w’) is an arc of E.

For the second point, assume for instance that (u,v) appears in the transitive reduction of F
and consider a vertex w such that both (u,w) and (w, v) belong to D. Since (u,v) belongs to the
transitive reduction of E, either (u,w) or (w,v) is reversed in E. Since E is acyclic, either (u,w)
or (w,v) is not reversed in E. Therefore, w belongs either to Afi » Oor to vﬁ »- In other words,

Vi, WAL is a partition of these vertices and py (E) is indeed a rope of D. O

We now connect the ropes of D with the join and meet irreducibles of AR p:
e for a join (resp. meet) irreducible I of ARp, let py(I) (resp. pa(I)) be the rope pf,
where (u,v) is the only arc reversed (resp. not reversed) in the transitive reduction of I,
e for a rope p:=(u,v,%7, ) on D, let I,(p) (resp. In(p)) be the reorientation of D where an
arc (w,w’) of D is reversed (resp. not reversed) if and only if w € AU{u} and v’ € yU{v}
(resp. w € YU {u} and w’ € AU {v}).
For an illustration of these maps, compare Figure 8 (bottom) with Figure 11.

Proposition 28. Assume that D is skeletal. The two maps py and Iy (resp. pp and I, ) are inverse
bijections between the join (resp. meet) irreducibles of ARp and the ropes of D.
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Proof. As AR p is self-dual under reversing all arcs, we focus on join irreducibles.
It follows from Lemma 27 that py(.J) is indeed a rope of D for any join irreducible J of AR p.

Conversely, consider a rope p:=(u,v,7,A) of D. We claim that the reorientation I, (p) of D
is acyclic. Indeed, since D is filled, 7 U A covers all vertices that appear along a directed path
in D joining u to v. Hence, there exists a total order < on V so that all arcs of D are increasing
for < and YUA ={w €V | u < w < v}. Let <" denote the total order on V obtained from < by
reordering {u, v} U7 UA such that 57 appears first (in < order), then v and u, and A appears last
(in < order). Then all arcs of I, (p) are clearly increasing for <’, so that I,(p) is indeed acyclic.
Moreover, (u,v) is by definition the only arc of D reversed in I (p) which belongs to the transitive
reduction of I (p). By Proposition 19, we conclude that Iy (p) is join irreducible in AR p.

Finally, it is immediate to check that Iy (py(J)) = J for any join irreductible J of ARp and
that py(Iy(p)) = p for any rope p of D, so that py and I, are inverse bijections between join
irreducibles of ARp and ropes of D. O

Note that combining Lemma 26 (i) and Proposition 28, we obtain a precise count of the join
(resp. meet) irreducibles of ARp when D is skeletal, refining the lower bound of Corollary 20.

We finally observe that the bijections py and ps provide a simple description of the Kreweras
maps ky and K defined in Section 3.3. Namely, it is easy to check that py (kv (M)) = pa(M) for
any meet irreducible M of AR p, and pa(ka(J)) = py(J) for any join irreducible J of AR p.

4.2. Rope diagrams and canonical representations. Two ropes (u,v,57,A) and (v/,v', ', AA’) are
crossing if there are distinct vertices w # w’ such that w € (v U {u,v}) N (A" U {v/,v’'}) and
w € (AU{u,v}) N (Y U{v,v'}). A non-crossing rope diagram is a collection of pairwise non-
crossing ropes of D. The non-crossing rope complex of D is the simplicial complex of non-crossing
rope diagrams of D.

We now connect the non-crossing rope diagrams of D with the elements of AR p:

e for an acyclic reorientation E of D, let 6y (E) (resp. 65(E)) be the set of ropes pf, for all
arcs (u,v) reversed (resp. not reversed) in the transitive reduction of F,
e for a non-crossing rope diagram § of D, define

Ey(0):=\/Iu(p)  (resp. EA(6):= N\ In(p)).

pES pES

Proposition 29. Assume that D is skeletal. The two maps oy and E\, (resp. 5 and Ex) are inverse
bijections between acyclic reorientations of D and non-crossing rope diagrams of D.

Proof. As AR p is self-dual under reversing all arcs, we focus on dy, and E\, .

We first prove that dy (E) is indeed non-crossing. Assume by means of contradiction that dy (E)
contains two distinct ropes p:= (u,v,v7,A) and p':= (uv/,v', 7', ") of D such that there are two
distinct vertices w # w’ with w € (VU{u,v})N(A'U{u/,v'}) and w’ € (AU{u,v})N (' U{u/,v'}).
Since E cannot contain simultaneously the arcs (w,w’) and (w’,w), we can assume for instance
that (w,w’) is not in E. Since w € (YU{u,v}) and w’ € (AU{u,v}), Lemma 27 implies that w = u
and w’ = v. We distinguish four cases:

o If w=wu=17"and w' =v =4/, then E cannot contain both arcs (v,u) and (v',u’),
o If w=wu=7" and w =v #, then v € 5/ so that D contains the arc (w’,v") = (v, u),
o Ifw=u+#v and w' =v =1/, then w € A’ so that D contains the arc (v/,w) = (v,u),
o If w# v and w' # v/, then w € AU {v'} and v’ € ' U {v'}, so that E contains a
directed path joining w’ = v to w = u and passing through the arc (v',u’), hence (v, u) is
not in the transitive reduction of E.
All four cases contradict our assumption that both p and p are in oy (E). We conclude that oy (E)
is a non-crossing rope diagram.

Conversely, observe that F\ (0) is well-defined since each I, (p) is an acyclic reorientation of D
by Proposition 28.
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We now prove that E\ (éy(F)) = E for any acyclic reorientation E of D. From Corollary 23
and the definition of §,, and E\, we have:

E= \/ Euw) and Ey(6v(E)) = \/ Iy(p) = \/ Iv(Pf,v)
(u,v) pESY (B) (u.v)
where (u, v) runs over all arcs of D reversed in the transitive reduction of E. We thus just need to
prove that Iv(pfiv) = E(y,v) for any arc (u,v) of D reversed in the transitive reduction of £. We
will show that any arc (w,w’) in D is reversed in Iy (pf,) if and only if it is reversed in E(, ).

If (w,w’) is reversed in E, ), then by definition it is the only arc reversed in E along a directed
path in D joining u to v. Since F is filled, either u = w or both (u,w) and (w,v) are arcs of D.
Moreover, by acyclicity of E, (u,w) is not reversed in E, so that w € AE,U. Similarly, either w’ = v
or w' € ¥ . It follows by definition that (w,w’) is reversed in Iy (pf ,)

Conversely, assume that (w,w’) is reversed in I,(p[,). Then by definition w € AZ, U {u}
and w’ € v, U{v}. Consider the directed path 7 in D formed by the arcs (u,w), (w,w’),
and (w’,v) (of course, ignore the first arc if u = w and the last arc if w’ = v). Since (w, w’) is the
only arc reversed in E along 7, we obtain by definition that (w,w’) is reversed in Euv)-

Finally, we prove that dy (E\y(d)) = ¢ for any non-crossing rope diagram ¢. By Theorem 9, an
arc is reversed in Ey(9) if and only if it belongs to the transitive closure of the arcs reversed in
at least one of the reorientations Iy (p) for p € §. It immediately follows that if an arc (u,v) of D
is reversed in the transitive reduction of E\ (d), then 4 contains a rope of the form (u,v,<7, A).
Conversely, fix a rope p:= (u,v,v, ) € 6. We prove below the following claims:
(i) for any w € 7 U A, exactly one of the two arcs (u, w) and (w,v) is reversed in E\ (9),
(i) s’ = p,

(iii) the arc (u,v) is reversed in the transitive reduction of E\, (4).

We deduce from (ii) and (iii) that dy (Ey(0)) = 0.

For (i), suppose by symmetry that w € 7. Since Ey(J) > Iy(p), the arc (u,w) is reversed
in Ey(d). Assume by means of contradiction that (w,v) is also reversed in E\ (§). By Theorem 9,
there exists a directed path w = wg, wy, ..., w, = v such that, for each ¢ € [¢], the arc (w;_1,w;) is
reversed in Iy, (p') for at least one p’ € §. Since D is filled, (u,w,—1) is also an arc of D. Since E\ (9)
is acyclic and all arcs (u, w) and (w;—1,w;) are reversed in E\, (d), the arc (u,wy—_1) is also reversed
in Ey/(0). We thus obtain that wy_; belongs to AU/ and both (v, wy—1) and (we_1, v) are reversed
in Ey(d). Replacing w by wy_1, we can therefore assume that (w,v) is reversed in Iy (p’) for at
least one p’ € §. By definition of Iy (p’), we have w € A’ U {v'} and v € 7/ U {v'}. Since w € v/
this implies that the ropes p and p’ are crossing, contradicting our assumption on d.

For (ii), consider w € 7. Since Ey(8) > I, (p), the arcs (u,v) and (u,w) is reversed in E\(0),
so that the arc (w,v) is not reversed in E\(d) by (i). Hence 57 C v,’iﬁ,(é). Similarly, A C Afj,(‘s).
We conclude that pfi Z,(‘;) =p.

For (iii), we already know that the arc (u,v) is reversed in E\/(§). If it is not in the transitive
reduction of E\(0), there is a directed path u = wq,...,w, = v in D (with ¢ > 1) completely
reversed in E\ (0). Since D is filled, (wy,v) is also an arc in D, and it is reversed in E\ () by
acyclicity. This contradicts (i).

To conclude, we have shown that F\(dy(E)) = E for any acyclic reorientation E of D and
that dy (Ey(d)) = § for any non-crossing rope diagram 4, so that dy and E\, are inverse bijections
between acyclic reorientations of D and non-crossing rope diagrams of D. O

As a consequence of Corollary 23 and Proposition 29, we obtain the canonical join and meet
representations in ARp in terms of ropes of D, and the canonical join (resp. meet) complex in
terms of non-crossing rope diagrams of D. For an illustration of the following two statements,
compare Figure 8 (bottom) with Figure 11.

Corollary 30. Assume that D is skeletal. The canonical join (resp. meet) representation of any
acyclic reorientation E of D is

E= \/ L) (resp. E= N\ Ir(p))

pEdy (E) PEIA(E)
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F1GURE 11. The canonical join complexes of Figure 8 as non-crossing rope complexes. To repre-
sent a rope (u,v,v/,A), we highlight the arc (u,v) in red, and we mark the vertices of 37 and A
by down and up triangles respectively. The rightmost complex is the non-crossing arc complex
of [Real5].
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Corollary 31. Assume that D is skeletal. The canonical join (resp. meet) complex of ARp is
isomorphic to the non-crossing rope complex of D.

Note that Propositions 28 and 29 and Corollaries 30 and 31 fail when D is not filled. For
instance, in the rightmost acyclic reorientation lattice of Figure 3, D has 4 ropes but 6 join
irreducibles, and 16 non-crossing rope diagrams but 14 elements.

Note that if D:=(V, A) and D’:=(V, A’) are such that A O A’ and D’ is pathful in D, then
the ropes of D’ are precisely the ropes of D supported by the arcs of D’, and the non-crossing
rope complex of D’ is the subcomplex of the non-crossing rope complex of D induced by the ropes
of D’. This is a special case of lattice quotient of AR p studied in Section 5.

4.3. Rope bidiagrams and intervals. We finally briefly describe in terms of ropes the canonical
complex of ARp, and thus its intervals. We start with a criterion for a join irreducible acyclic
reorientation of D to be smaller than a meet irreducible acyclic reorientation of D.

Lemma 32. Assume that D is skeletal. The following statements are equivalent for any two
ropes p¥ = (u", vV, 7V, AY) and p" = (u, 0", v, A) of D:
e the join-irreducible 1., (p") is lower than the meet irreducible I,(p") in ARp,
e there is no w € (AY U{uV}) N (V" U{u"}) and v’ € (7Y U {vV}) N (AN U {v"}) such
that (w,w') is an arc of D.

Proof. By definition, an arc (w,w’) of D is

e reversed in I, (pY) if and only if w € AV U {uV} and w’' € 7Y U{v"}, and

e unreversed in I (p") if and only if w € " U {u"} and w’ € A" U {v"}.
The result immediately follows since Iy (p¥) is smaller than I,(p") if and only if there is no arc
of D reversed in I, (p¥) and unreversed in I, (p"). O

We write py F pa if the properties of Lemma 32 are fulfilled. A rope bidiagram of D is a
pair (6Y,") of non-crossing rope diagrams of D such that p¥  p” for any p¥ € 6V and p" € §”".
The rope bidiagram complex of D the simplicial complex whose ground set contains two copies pV
and p” of each rope p of D, and whose faces are the sets {p¥ | p € §Y}U{p" | p € 6"} for any rope
bidiagram (6V, ") of D.

Proposition 33. Assume that D is skeletal. The two maps [EY,E"] — (0y(EY),65(E")) and
(6Y,6") = [Ev(6Y), EA(6™)] are inverse bijections between the intervals of ARp and the rope
bidiagrams of D.

Proof. The result immediately follows from Proposition 29 and Corollary 30, Lemma 32 and
the fact that £ < F' if and only if any canonical joinand of E is smaller that any canonical
meetand of F. Note that this is precisely the argument of [AP23] to affirm that the canonical
complex is flag. O

Corollary 34. Assume that D is skeletal. The canonical complex of AR p is isomorphic to the rope
bidiagram complex of D.
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5. QUOTIENTS OF ACYCLIC REORIENTATION LATTICES

Throughout this section, we assume that D is skeletal, so that the acyclic reorientation poset AR p
is a congruence uniform lattice by Proposition 25. We use the ropes introduced in Section 4 to
study the congruences of the acyclic reorientation lattice AR p, generalizing N. Reading’s work on
congruences of the weak order [Real5].

5.1. Restrictions and extensions of congruences. To describe the congruences of AR p, it will be
useful to restrict (resp. extend) congruences of AR p to subgraphs (resp. supergraphs) of D. Con-
sider thus two directed acyclic graphs D:=(V,A) and D’:=(V, A’) on the same vertex set V
with A D A’) and assume that both D and D’ are skeletal so that the acyclic reorientation
posets ARp and AR p are congruence uniform lattices by Proposition 25. To extend congru-
ences of AR ps to congruences of AR p, we need that D’ be pathful in D, so that ¢p pr is a lattice
map by Theorem 2.

Proposition 35. If D’ is pathful in D, then any congruence = on AR p: extends to a congruence =

on ARp defined by E = F if and only if ¢p,p'(E) = ¢p,p/(F).

Proof. Recall that = is a congruence of a lattice L if and only if the classes of = are the fibers
of a lattice map L — M. The result immediately since the composition Ap:=Ap:o¢p p: of
any such lattice map Ap/ : ARp — M with the lattice map ¢p p : ARp — ARp: is a lattice
map Ap : ARp — M. O

Conversely, to restrict congruences of ARp to congruences of ARps, we need that D’ be
strongly pathful in D, so that ¢p pr restricts to a lattice isomorphism from a lower interval
of ARp to ARp: by Theorem 2, whose inverse we denote by ¢p ps (in other words, ¢p p/(E’) is
the acyclic reorientation of D whose reversed arcs are exactly the reversed arcs of E’).

Proposition 36. If D’ is strongly pathful in D, then any congruence = on ARp restricts to a
congruence =' on ARp: defined by E' =" F' if and only if Yp p(E') = ¢p p (F').

Proof. The congruence = of AR p restricts to a congruence of the interval [D, ¢¥p p/(D’)] of ARp,
which is isomorphic to AR ps since D’ is strongly pathful in D. O

5.2. Subropes. Recall from Section 3.4 that the set con(L) of congruences of a lattice L, ordered
by refinement, is a distributive lattice. When L is congruence uniform, the map sending a join irre-
ducible j of L to the join irreducible congruence con(j,, j) of con(L) is a bijection (where con(z, y)
denotes the minimal congruence such that z = y). In other words, con(L) is isomorphic to the set
of lower ideals of the forcing order on join irreducibles of L, defined by j < j’ if con(j., j') refines
con(Jy, j). Moreover, for a congruence = of L corresponding to a lower ideal I of the forcing order,

e an element of L is minimal in its =-class if and only if all the join irreducibles in its
canonical join representation belong to I,

e the canonical joinands of a congruence class X in L/= are the classes of the canonical
joinands of the minimal element in X.

Dual statements hold using meets instead of joins. In view of these statements, understanding the
congruences and quotients of a congruence uniform lattice amounts to understanding the forcing
order on the join irreducibles of L and its lower ideals.

For acyclic reorientation lattices, the forcing order is not difficult to describe in terms of the
ropes of Section 4. A rope p:=(u,v,57, ) is a subrope of a rope p’:= (u/,v’, 7', A’) if and only
if {u,v} C{v/,v'} U/ UA" and 57 C v/ while A C A’. The subrope order is the order on ropes
of D defined by p < p’ if p is a subrope of p’. Examples of subrope orders are illustrated in
Figure 12.

Proposition 37. Assume that D is skeletal. For any two join irreducibles J and J' of the acyclic
reorientation lattice ARp, J forces J' if and only if py(J) is a subrope of py(J').

Proof. Here, we could specialize to the acyclic reorientation lattice AR p the general results on
the forcing order among shards for an arbitrary tight hyperplane arrangement [Rea04, Real6].
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FIGURE 12. The subrope orders on the directed acyclic graphs of Figure 8. To represent a
rope (u,v,57, A), we highlight the arc (u,v) in red, and we mark the vertices of 57 and A by down
and up triangles respectively. The rightmost order is the subarc order of [Real5].

We would in particular recover N. Reading’s description in terms of subarcs of the forcing order
among join irreducibles in the weak order on permutations [Rea04, Real5]. Let us instead assume
this description, and observe that it essentially implies our statement for the acyclic reorienta-
tion lattice ARp. Indeed, consider two join irreducibles J and J' of ARp and let p:=py(J)
and p':=py(J'). Let V' denote the transitive support of p’ and D’ denote the subgraph of D
induced by V.

Assume first that both endpoints of p belong to V’. Since D is filled, D’ is a tournament, so
that AR p is isomorphic to the weak order on permutations of V’. The restriction map ¢p p
sends the join irreducibles J and J' of AR p to join irreducibles of ARp/. Since D’ is strongly
pathful in D, we can transport any lattice congruence = of ARp to a lattice congruence =’
of ARps and wvice versa by Propositions 35 and 36, preserving the refinement order. Moreover,
observe that J is contracted in = if and only if ¢p ps(J) is contracted in ='. We therefore obtain
that J forces J' if and only if ¢p p/(J) forces ¢p p/(J'). By N. Reading’s work [Real5], the latter
is equivalent to py (J) being a subrope of py(J’) (it is called subarc in [Real5], we use the term
subropes here to avoid confusion with the arcs of directed graphs).

Assume now that at least one endpoint of p does not belong to V’'. Observe that the arc a
reversed from J, to J does not belong to D', while the arc a’ reversed from J, to J' belongs
to D'. By Theorem 2, the restriction ¢p p/ is a lattice map, so that its fibers define a lattice
congruence = of ARp. We have J, = J (since a does not belong to D) but J, £ J’ (since a’
belongs to D’). It follows that J does not force J'. O

Corollary 38. Assume that D is skeletal. The congruence lattice of ARp is isomorphic to the
lattice of lower ideals of the subrope order for D.

Observe that if the transitive reduction of D is a path, then all lower ideals of the subrope order
for D are lower ideals for the subrope order on that path. In other words, all lattice quotients
of D are lattice quotients of the weak order on permutations. However, we obtain more lattice
quotients as soon as the transitive reduction of D is not a path.

Note that the extension operation of Proposition 35 consists in considering a lower ideal of arcs
of D" as a lower ideal of arcs of D, while the restriction operation of Proposition 36 consists in
conserving only the ropes supported by the arcs of D’. These operations are well-defined when D’
is pathful in D since the ropes of D’ then coincide with the ropes of D supported by arcs of D’,
and the subrope order is the same when regarding these ropes in D or in D’.

We denote by I= the lower ideal of the subrope order corresponding to a congruence = of AR p,
and conversely by =; the congruence of AR p corresponding to a lower ideal I of the subrope order.
In other words, I= is the set of ropes py (J) for the join irreducibles J of AR p uncontracted by =,
and =y contracts the join irreducibles Iy (p) for p not in I.

Corollary 39. Assume that D is skeletal. For any congruence = of ARp,

e an acyclic reorientation E of D is minimal in its =-class if and only if éy(E)
o ARp/= is isomorphic to the subposet of ARp induced by {F € ARp | év(E)

A symmetric statement holds for mazximal elements and S, .

-
c
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We can finally use bidiagrams to describe the intervals of the quotient lattice.

Corollary 40. Assume that D is skeletal. For any congruence = of AR p, the intervals of ARp/=
are in bijection with the rope bidiagrams of D whose ropes are all in I=.

In connection to the simpliciality of the quotient fans (or equivalently to the simplicity of the
quotientopes) defined below, it would be interesting to understand which quotients of AR p have
a regular cover graph (meaning all vertices have the same degree). For instance, when D is a
tournament, H. Hoang and T. Miitze proved in [HM21] that the cover graph of AR p/= is regular
if and only if the generators (as an upper ideal of the subrope order) of the complement of I= are
all of the form (u, v, 7, @) or (u,v, &, A). We hope that the rope interpretation of the congruences
of ARp will help to extend this result for arbitrary skeletal directed acyclic graphs

Problem 41. Characterize the skeletal directed acyclic graphs D and the congruences = of AR p
for which the cover graph of AR p/= is regular.
5.3. Partial reorientations. We have seen above that the non-crossing rope diagrams (resp. the
rope bidiagrams) are particularly suited to encode the elements (resp. the intervals) of the lattice
quotients of AR p. Here, we define alternative combinatorial models, based on the observation of
Proposition 12 that any interval of AR p can be seen as the fiber of a partial acyclic reorientation
of D under the corresponding restriction map. Namely, for an interval I of ARp/=, define
e P; to be the set of arcs which belong to all acyclic reorientations in all classes of I, and
e R; to be the transitive reduction of Pr.
For a single class X € ARp/=, we write Px and Rx instead of Prxy and Ryx}. Define

IP=:= {Pr| I interval of ARp/=} and  ZR=:= {R;| I interval of ARp/=},
P=:= {Px | X class of =} and R=:={Rx | X class of =}.
For instance, for the trivial congruence = (where the congruence classes are all singletons),

e a partial acyclic reorientation P of D is in ZP_ if and only if (u,w) € P or (w,v) € P for
any arc (u,v) € P and any w in between u and v in the transitive reduction of D,
e the elements of P— and R— are the acyclic reorientations of D and their transitive reductions.
The criterion for ZP_ is a specialization of Proposition 11 in the situation where D is skeletal.
It generalizes the classical criterion of [BW91] for the integer posets corresponding to intervals of
the weak order, see also [CPP19]. We will see further relevant examples of these families P=, R=,
IP—, and ZTR= of partial acyclic reorientations of D in Section 5.4.

For a partial acyclic reorientation P of D, define PV:=P ~ D and P":=P N D. Order the
set of partial acyclic reorientations of D by P < @Q if and only if PV D QY and P" C Q”. The
following generalizes the motivating observation of [CPP19].

Proposition 42. Assume that D is skeletal. For any congruence = of ARp,
o the quotient ARp/= is isomorphic to (P=, <),
e the lattice of intervals of ARp /= is isomorphic to (ZP=,<).
Proof. Observe that

e for two acyclic reorientations F and F of D, wehave E < F' < EY C FV < E" D F",
e for an interval [:=[E, F] of ARp, we have P = EY U F.

Therefore, for two intervals I:=[E, F| and I' :=[FE’, F’], we have
I<I «— E<E and F<F <= EVCEYand F"D F'" < P; < Pp.
This shows the second point of the statement. The first point follows by specializing to singleton

intervals. O

These partial acyclic reorientations provide a different perspective on the elements and the
intervals of ARp. For instance, the degree of an =-class X in the Hasse diagram of ARp/= is
the number of arcs of Rx. Problem 41 can thus be reformulated as follows.

Problem 43. Characterize the skeletal directed acyclic graphs D and the congruences = of AR p
for which all partial acyclic reorientations of R= are forests.
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5.4. Coherent congruences and principal congruences. The prototypical lattice congruence of
the weak order on &,, is the sylvester congruence [HNTO05], whose quotient is the Tamari lat-
tice [Tamb51, HT72]. The sylvester congruence can be defined equivalently as

(i) the congruence where each class is the set of linear extensions of a binary tree (labeled in
inorder and oriented toward its root),
(i) the transitive closure of the rewriting rule UacVdW = UcaVOW forletters 1 <a < b < ¢ <n.

It follows from (i) that the sylvester class posets are the standard binary search trees, and from (ii)
that a permutation is minimal (resp. maximal) in its sylvester class if and only if it avoids the pat-
tern 312 (resp. 132). The sylvester congruence was extended in [Rea06] to Cambrian congruences
and in [PP18] to permutree congruences. We next define analogues of these congruences for the
acyclic reorientation lattices.

Coherent congruences. Fix a pair (U, Q) of arbitrary subsets of V. We denote by I(;5 o) the set of
ropes (u,v,5/,A) of D such that 57 C U and A C Q. Note that the intersection of U or Q with
the set L of leaves of the transitive reduction of D is irrelevant for the definition of I(5 ). Observe
also that the set I(;5 o) is clearly a lower ideal of the subrope order whose

e generators are the ropes (u, v, v/, A) with u,v € LU (V ~ (DU Q)), and 57 C U while A C Q,
e cogenerators are the ropes (u,v, {w}, @) for w ¢ U and (u,v,d, {w}) for w ¢ Q.

We denote by =5,y the corresponding congruence of ARp. We say that =5, is a coherent
congruence. For instance,

e Iy, contains all ropes on D, hence =(y,y) has one class for each acyclic reorientation of D,
e I3 &) contains only the ropes (u,v,d,@) for (u,v) in the transitive reduction of D,
hence = &) has one class for each acyclic reorientation of the transitive reduction of D.

More interestingly, we define

e the sylvester congruence of ARp as the coherent congruence =y g), and the Tamari
lattice of D as the quotient ARp/=(v,z), generalizing [HNTO05, Tam51],

e the Cambrian congruences of AR p as the coherent congruences =5 o) such that U Q =V,
and the Cambrian lattices of D as the corresponding quotients of AR p, generalizing [Rea06].

For instance, Figure 13 illustrates the partitions of AR p into sylvester classes and the Tamari
lattices for the acyclic reorientation lattices of Figure 8.

Three problems on Cambrian congruences. Before studying coherent congruences in general, let
us already observe that the Tamari and Cambrian lattices do not always behave as in the classical
situation of the weak order. This is illustrated in particular by the following three problems,
verified by computer experiments on all skeletal directed acyclic graphs up to 6 vertices. The first
two problems are specific cases of Problems 41 and 43.

Problem 44. Prove the equivalence of the following assertions for a skeletal directed acyclic graph D:

(i) D has no induced subgraph isomorphic to E)g or &,
(ii) the cover graph of the Tamari lattice of D is regular,
(iii) the partial acyclic reorientations Ry for the sylvester classes X are all forests.

Problem 45. Prove the equivalence of the following assertions for a skeletal directed acyclic graph D:

(i) D has no induced subgraph isomorphic to or & or &,
ii) the cover graphs of all Cambrian lattices of D are regular,
ii) th hs of all Cambrian latti f 1
(iii) the partial acyclic reorientations Rx for the Cambrian classes X are all forests.

Problem 46. Prove the equivalence of the following assertions for a skeletal directed acyclic graph D:

(i) D has no induced subgraph isomorphic to &,
(ii) all Cambrian lattices of D have the same number of elements,
(iii) the cover graphs of the Cambrian lattices of D are all isomorphic (as undirected graphs).
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FIGURE 13. The sylvester congruences =(v, ) and the Tamari lattices AR p / =(v,g) for the acyclic
reorientation lattices of Figure 8. The first line shows the sylvester classes as blue bubbles. The
second and third lines show the Tamari lattices, where each sylvester class X is represented
by Px on the second line and Rx on the third line. The rightmost congruence is the classical
sylvester congruence on the weak order, its quotient is the classical Tamari lattice, and the partial
reorientations Rx are standard binary search trees (to see it, just redraw Rx with green arcs
pointing northeast and red arcs pointing northwest).
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Combinatorial properties of coherent congruences. We now provide analogues for the coherent
congruences of the classical properties of the sylvester [HNTO05], Cambrian [Rea06] and per-
mutree [PP18] congruences recalled above. We start by the following analogue of the rewriting
rule of the sylvester congruence.

Proposition 47. Assume that D is skeletal. For any U,Q C V and any acyclic reorientation E of D,
the =@s,0)-class of E is preserved by flipping any arc (u,v) of the transitive reduction E such
that Vf,v Z G or Afiv & Q. Moreover, the congruence =5, is the transitive closure of these flips.

Proof. Tt follows from the definition of the join irreducibles preserved by =5 q). (]

Next, we give an analogue for the coherent congruences of the pattern avoidance property of
the minimal and maximal permutations in sylvester congruence classes.

Proposition 48. Assume that D is skeletal. For any U,Q C V and any acyclic reorientation E
of D, the following statements are equivalent:
(i) E minimal (resp. mazimal) in its = ,o)-congruence class,
(it) V&, CU and A, CQ for any arc (u,v) of D reversed (resp. unreversed) in the transitive
reduction of E,
(iii) 75, C U and AL, CQ for any arc (u,v) of D reversed (resp. unreversed) in E.

Proof. We focus on minimal elements, the proof for maximal elements is symmetric. By Corol-
lary 39, E is minimal in its =5 o)-class if and only if 0y (E) C I(5,0). Since dy (E) is formed by the
ropes (u,v, Vi, AF,) for (u,v) reversed in the transitive reduction of E, we obtain (i) <= (ii).

Assume now that (i) holds, consider an arc (u,v) reversed in E, and let w € AF . If (u,v)
is in the transitive reduction of E, then w € Q by (ii). Otherwise, let u’ € V be the last vertex
before u in the directed path from v to w in the transitive reduction of E. Since (u,w) is an
arc of E, we obtain that v’ # w and that (w,u’) is reversed in E (as otherwise the arcs (u,w),
(w,u) and (u',u) would form a directed cycle in F). Therefore, w € Aiu, C Q. We conclude
that ALY, C Q and by symmetry that 77, C U, so that (i) <= (iii). O

We now focus on the partial acyclic reorientations arising from coherent congruences. Let us
abbreviate P= ;; o, into Py o) and similarly for R0y, TP (55,0), and IR (5,0)- The next statement
characterizes the partial acyclic reorientations in ZP (s ), generalizing [CPP19, Sect. 2.3.2] for
the permutree interval posets. Recall from Section 5.3 that a partial reorientation P of D belongs
to ZP= (i.e. corresponds to an interval of ARp) if and only if (u,w) € P or (w,v) € P for any

arc (u,v) € P and any w in between v and v in the transitive reduction of D.

Proposition 49. Assume that D is skeletal. For any G,Q CV, the following assertions are equiv-
alent for a partial acyclic reorientation P of D:
(i) P belongs to P 15,0y,
(ii) for any arc (u,v) € P and any w in between u and v in the transitive reduction of D, we
have (u,w) € P or (w,v) € P, and moreover (u,w) € P if w ¢ U, and (w,v) € P if w ¢ Q.

Proof. Consider first the partial reorientation Py of D corresponding to an interval I of ARp /=,
and consider (u,v) € Pr and w in between u and v in the transitive reduction of D. Since any
interval of ARp/= comes from an interval of ARp, we have P € IP—, so that (u,w) € Py
or (w,v) € P;. Assume for instance that (u,v) € D and that (u,w) ¢ P;, and consider the
maximal acyclic reorientation E of D that agrees with P;. We have (w,u) € E (since (u,w) ¢ Pr)
and (w,v) € E (since (w,v) € Pr). Hence w € ¥, C U by Proposition 48, since E is maximal
in its =,0)-class and (u,v) is unreversed in E. The proof is symmetric when (v,u) € D or
when (w,v) ¢ P. We conclude that (i) implies (ii)

Conversely, consider a partial reorientation P of D satisfying (ii). It follows in particular
that P € ZP_. Let E be the maximal acyclic reorientation of D that agrees with P. Consider
an arc (u,v) of D unreversed in E and w in between w and v in the transitive reduction of D.
If w ¢ U, then (u,w) € P so that (u,w) € E and w ¢ v ,. Hence, V%, C U and by symmetry
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Aﬁ » © Q. We conclude that E is maximal in its = q)-class by Proposition 48. Similarly, the
minimal acyclic reorientation of D that agrees with P is minimal in its = g)-class. We conclude
that P defines indeed an interval of ARp/=. O

In contrast, we are still missing a criterion similar to [CPP19, Sect. 2.3.3] to distinguish the
partial reorientations of P(;5 ) among that of ZP 5 ).

Problem 50. Describe the partial acyclic reorientations of P oy for any U, C V.

Similarly, we are still missing an analogue of binary trees (or of permutrees) to characterize the
partial acyclic reorientations of R ;5 q). Since the cover graph of the Tamari lattice of D is not
always regular as illustrated in Figure 13 (middle) and discussed in Problem 44, the partial acyclic
reorientations of R 5,y are not always forests in contrast to the binary trees (or the permutrees)
in the classical case. In view of Proposition 36, we can however observe that for any subset U of V/
forming a path in the transitive reduction of D and any congruence class X of = o), the subgraph
of Rx induced by U is contained in a permutree for the restriction of the decoration (U,€2) to U.
We leave the precise characterization as an open problem for further research.

Problem 51. Describe the partial acyclic reorientations of R, for any U,Q2 C V.

Principal congruences. We finally introduce another family of lattice congruences of AR p, gen-

eralizing the sylvester and Cambrian congruences of the classical weak order, that will play an
important role in the sequel of this paper. For a rope p:=(u,v,57,A) of D, we denote by I, the
principal lower ideal of the subrope order generated by p, and by =, the corresponding lattice
congruence of ARp. We say that =, is a principal congruence.

Denote by D’ the subgraph of D induced by the transitive support of (u,v) in D. Applying the
restriction and extension operations of Propositions 35 and 36, the principal congruence =, can
be seen as a Cambrian congruence E’p on D’. We therefore completely control the combinatorics
of =,. For instance, the analogue of Problem 51 for principal congruences has a simple answer: the
partial acyclic reorientations of R, :=R=, are precisely the Cambrian trees considered in [LP18,
CP17, PP18], for the signature given by the partition 57 U A along the directed path joining u
to v in the transitive reduction of D.

5.5. Hamiltonian quotients. We conclude this section by a brief discussion of an open problem
concerning Hamiltonian cycles in quotients of the acyclic reorientation lattice AR p.

A classical result, independently discovered in [Tro62, Joh63, Ste64], states that the graph of
the permutahedron admits a Hamiltonian cycle. In contrast, not all acyclic reorientation graphs
admit a Hamiltonian cycle. Indeed, recall that the parity of the number of reversed arcs defines a
proper bipartition of the acyclic reorientation graph. Hence, a necessary condition for the acyclic
reorientation graph to admit a Hamiltonian cycle (and even a Hamiltonian path) is that the number
of even acyclic reorientations equals the number of odd acyclic reorientations. For instance, the
acyclic reorientation graph of a 4-cycle illustrated in Figure 1 (right) has no Hamiltonian path
since it has 8 even acyclic reorientations and 6 odd acyclic reorientations. It is conjectured that
this condition is also sufficient, but the question still remains open in general to the best of our
knowledge. Importantly for our discussion, it was proved in [SSW93] that the acyclic reorientation
graph of a chordal graph admits a Hamiltonian cycle, which can be explicitly constructed in a
similar way as the classical Gray code for permutations of [Tro62, Joh63, Ste64].

Another classical result, proved in [Luc87, HN99], states that the graph of the associahedron
admits a Hamiltonian cycle. It was proved recently in [HM21] that the graph of any lattice
quotient of the weak order actually admits a Hamiltonian path (the question of the existence of a
Hamiltonian cycle remains open in general). The approach of [HM21] being largely based on non-
crossing arc diagrams, it motivates the following question, which has been positively answered by
computer experiments on all lattice congruences of the acyclic reorientation lattices of all skeletal
directed acyclic graphs up to 5 vertices.

Problem 52. Assuming that D is skeletal (thus chordal), do all graphs of lattice quotients of AR p
admit a Hamiltonian cycle?
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6. QUOTIENT FANS AND QUOTIENTOPES

We now switch to the geometric side of this paper. As originally observed by C. Greene [Gre77]
(see also [GZ83, Lem. 7.1]), the acyclic reorientation poset AR p can be interpreted geometrically
on the graphical fan of D or on the graphical zonotope of D. When D is skeletal, we consider
the quotient fans of the congruences of ARp (obtained by glueing regions of the graphical ar-
rangement according to congruence classes) and show that they are normal fans of quotientopes
(obtained either as Minkowski sums of associahedra of [HLO7], or as Minkowski sums of shard
polytopes [PPR22] of ropes).

6.1. Graphical fan, shards, and quotient fans. Recall that a (polyhedral) cone is a subset of R™
defined equivalently as the positive span of finitely many vectors, or as the intersection of finitely
many linear halfspaces. Its faces are its intersections with its supporting linear hyperplanes, and
its rays (resp. facets) are its dimension 1 (resp. codimension 1) faces. A (polyhedral) fan F is a
collection of cones which are closed under faces (if C € F and F is a face of C, then F € F) and
intersect properly (if C, C’ € F, then CNC' is a face of both C and C’). The chambers (resp. walls,
resp. rays) of F are its codimension 0 (resp. codimension 1, resp. dimension 1) cones. The fan F
is complete if the union of its cones covers RY, essential if the origin is a cone of F, and simplicial
if the rays of each cone of F are linearly independent.

Graphical fan. Here, we work in the vector space RV indexed by the vertex set V of D. We denote
the standard basis by (e,),cv, and the characteristic vector of a subset U C V by 1y := ), .y €u-
The graphical arrangement Hp of D:=(V,A) is the arrangement containing the hyperplanes
H,, = {:B e RV ’ Ty = xv} for all arcs (u,v) € A. It defines the graphical fan Fp of D, whose
chambers are the closures of the connected components of RY <« U(u,v)eA H,,. Note that Fp
is complete but not essential since all its cones contain the linear subspace K generated by the
characteristic vectors of the connected components of D. The intersection Fp N K* of Fp with
the orthogonal complement K+ of K is an essential fan with the same combinatorics as Fp. The
cones of Fp are in bijection with ordered partitions of D, i.e. pairs (u,w) where

e 1 is a partition of V' where each part induces a connected subgraph of D,
e w is an acyclic reorientation on the quotient graph D/p.

More precisely, the cone of Fp corresponding to the ordered partition (u,w) of D is defined by
the inequalities x,, < x, if there is a directed path in w from the part of 1 containing w to the part
of 1 containing v (in particular, we have the equalities z,, = x, if u and v belong to the same part
of p). In particular,

e cach acyclic reorientation E of D corresponds to a chamber Cg of Fp defined by the
inequalities z,, < x, for all arcs (u,v) of E (or just that of the transitive reduction of E),
e each biconnected subset U of D (i.e. non-empty connected subset U C V whose comple-
ment U in its connected component of D is also non-empty and connected) corresponds
to a ray of Fp NK+ directed by the vector vy = |U|15 — |U|1y.
Note that the ray ry belongs to the chamber Cg if and only if there is no arc oriented from U
to U in E. Moreover, the Hasse diagram of the acyclic reorientation poset AR p is isomorphic to
the dual graph of the graphical fan Fp, oriented in the direction wp = Z(u,v)eA e, — e,. Note
that the graphical arrangement Hp and the graphical fan Fp only depend on the underlying
undirected graph of the directed graph D, but that D determines the direction wp.

For instance, when D is the increasing tournament on [n], the graphical fan Fp is the braid fan,
defined by the braid arrangement, with all hyperplanes H;; for 1 < i < j < n. Its cones correspond
to ordered partitions of [n], its regions to permutations of [n], its rays to proper subsets of [n],
and its dual graph is isomorphic to the Hasse diagram of the weak order on &,,. Some examples
of graphical fans are represented in Figures 4 and 14.

Observe that the graphical fan Fp is not always simplicial. Recall that we say that D is chordful
if its underlying undirected graph G is, meaning that any cycle induces a clique. The following
statement is illustrated in Figures 4, 7 and 14. It is explicitely stated in [Kim08, Rem. 6.2]
and [PRWO08, Prop. 5.2], but the proof is omitted.
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FIGURE 14. The graphical arrangements for the directed acyclic graphs of Figure 8. Their dual
graphs oriented appropriately are isomorphic to the Hasse diagrams of the corresponding acyclic
reorientation lattices. On top, the regions are labeled by the corresponding acyclic reorientations
and the hyperplanes are colored according to the corresponding arc. On bottom, the arrangements
are intersected with the unit circle and projected stereographically from the chamber corresponding
to the reversed reorientation D, and the hyperplanes are decomposed into shards labeled by the
corresponding ropes. The rightmost arrangement is the braid arrangement. The middle fan is not
simplicial while the other two are.

Proposition 53. The graphical fan Fp is simplicial if and only if D is chordful.

Proof. Observe first that a region of Fp is simplicial if and only if the transitive reduction of the
corresponding acyclic reorientation of D is a forest.

Assume that Fp is not simplicial, so that there exists an acyclic reorientation E of D whose tran-
sitive reduction is not a forest. Therefore, the transitive reduction of E contains an (undirected)
cycle C. This cycle cannot induce a tournament of D, otherwise it would induce a tournament
of F and one of the arcs of C' would not be in the transitive reduction of F.

Conversely, assume that D is not chordful, and let C' be an (undirected) cycle of D such that
two vertices u and v of C' are not adjacent in D. Let X and Y denote the two two connected
components of C \ {u,v}. Consider any linear ordering < of V' such that the vertices of X arrive
first, then u and v, then the vertices of Y, and then all vertices of V not in C. Let = be the
minimum element of X for < and y be the maximum element of Y for <. Let E be the acyclic
reorientation of D where all arcs are increasing for <. Then the transitive closure of E contains
a path from z to y passing through u, and a path from z to y passing through v, and these two
paths cannot coincide since there is no arc in D connecting u and v. Thus, the transitive closure
of F is not a forest, so that Fp is not simplicial. O

Shards and quotient fan. Assume now that D is skeletal as in Sections 4 and 5, so that the acyclic
reorientation poset AR p is a congruence uniform lattice by Proposition 25. The ropes of D provide
a natural way to decompose the hyperplanes of Hp into pieces. Namely, the shard ¥, associated
to a rope p:=(u,v,v7,A) of D is

,:= {mERV‘xngu:xUSww/ for any w € v and w’ € A} .
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NP

F1cURE 15. The sylvester fans for the directed acyclic graphs of Figure 8. Their dual graphs
oriented appropriately are isomorphic to the Hasse diagrams of the corresponding Tamari lattices
represented in Figure 13. On top, the chambers are labeled by the corresponding partial acyclic
reorientations and the shards are colored according to the corresponding arc. On bottom, the fans
are intersected with the unit circle and projected stereographically from the chamber corresponding
to the reversed reorientation D, and the shards labeled by the corresponding ropes. The rightmost
fan is the classical sylvester fan. The middle fan is not simplicial while the other two are.

Some examples of shards are represented on the bottom of Figure 14.

For a congruence = of AR p, the quotient fan F= is the fan defined equivalently as follows:

e the chambers of F= are obtained by glueing the chambers of the graphical arrangement
of D corresponding to acyclic reorientations in the same congruence class of =,
e the union of the walls of 7= is the union of the shards ¥, for p in the rope ideal I=.

The fact that these two descriptions coincide and indeed define a fan was proved by N. Read-
ing [Rea04, Rea05] in the context of congruences of the lattice of regions of a hyperplane arrange-
ment tight with respect to its base region (see Section 7 for definitions and details). Note that

e cach =-class X corresponds to a chamber of the quotient fan F= defined by the inequali-
ties x,, <z, for all arcs (u,v) of the partial acyclic reorientation Px (or just that of Rx),
e a biconnected subset U of D corresponds to a ray of the quotient fan F= directed by the
vector i :=|U|1g — |U|1y if and only if the subrope ideal I= contains all ropes of the
form (u,v,d,A) with u,v € U and ANU = &, and of the form (u,v,/, @) with u,v ¢ U
and 7 € U. In particular, for a coherent congruence =,q), the ray ry of Fp is a ray
of Fw,0) if and only if u,v € U implies w ¢ U\ U and u,v ¢ U implies w ¢ QN U, for
any u,v,w € V such that w appears along a directed path in D joining u to v. (These

two observations can be shown mimicking the approach of [APR21, Sect. 3.1].)
Moreover, the Hasse diagram of the quotient AR p /= is isomorphic to the dual graph of the quo-
tient fan F—=, oriented in the direction wp := Z(u,v)e 4 €y — €. Similarly to Proposition 53, it
would be interesting to characterize which of these quotient fans are simplicial, which is a reformu-
lation of Problem 41 for arbitrary congruences and Problems 44 and 45 for Cambrian congruences.
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For instance, when D is the increasing tournament on [n] and = is the sylvester congru-
ence [HNTO5], the quotient fan F= is the sylvester fan. Its cones correspond to Schréder trees
on [n], its chambers to binary trees on [n], its rays to intervals of [n], and its dual graph is iso-
morphic to the Hasse diagram of the Tamari lattice on binary trees on [n]. Similar combinatorial
descriptions in terms of Cambrian trees and permutrees hold for the quotient fans of the Cambrian
congruences [Rea04, Rea06] and of the permutree congruences [PP18] of a tournament.

The sylvester fan of D is the quotient fan F(y, &) of the sylvester congruence =y, ). Note that
the rays of F(y &) correspond to biconnected subsets of D which are connected in the transitive
reduction of D. Some examples of sylvester fans are represented in Figure 15. As suggested in
Problem 44 and illustrated in Figure 15 (middle), the sylvester fan of D is not always a simplicial.
The Cambrian fans of D are the quotient fans of the Cambrian congruences =5 o) with GUQ = V.

Note that the quotient fans behave properly with respect to the restriction and contraction
operations of Section 5.1. Namely,

e if = extends =’ as in Proposition 35, then F= is a product of F= with a linear subspace,
e if = restricts to =’ as in Proposition 36, then F—. is a section of F= by a linear subspace.

6.2. Graphical zonotope, associahedra, shard polytopes, and quotientopes. A polytope is a subset
of R™ defined equivalently as the convex hull of finitely many points or as a bounded intersection
of finitely many closed affine halfspaces. Its faces are its intersections with its supporting affine
hyperplanes, and its vertices (resp. edges, resp. facets) are its dimension 0 (resp. dimension 1,
codimension 1) faces. The normal cone of a face I of a polytope P is the cone of vectors v € R™
such that I is the face of IP maximizing the functional  — (v | ). When P is full-dimensional,
the normal cone of I is generated by the outer normal vectors of the facets of IP containing F.
The normal fan of P is the fan formed by the normal cones of all faces of P.

The Minkowski sum of two polytopes P, Q C R" is the polytope P+-Q:= {p+q | p € P, g € Q}.
For any r € R", the face maximizing the direction r on P + Q is the Minkowski sum of the faces
maximizing the direction » on IP and Q. Therefore,

e the normal fan of IP + Q) is the common refinement of the normal fans of IP and @,

e the vertex of P+ Q maximizing a generic 7 is the sum of vertices of P and Q maximizing r,

e the facet of P 4+ @ maximizing a ray r is defined by (r |z ) = maﬂgc(r |p) —&—magg((r lq).
pE qe

Graphical zonotope. Consider the graphical zonotope Z.p, defined as the Minkowski sum of the
segments [e,, e,] for all (u,v) € A. Note that Zp is not full-dimensional as it is orthogonal to
the linear subspace K generated by the characteristic vectors of the connected components of D.
Since the normal fan of a Minkowski sum is the common refinement of the normal fans of the
summands, the graphical fan Fp is clearly the normal fan of the graphical zonotope Zp. Hence,
the faces of Zp are in bijection with ordered partitions of D. In particular,

e each acyclic reorientation FE of D corresponds to a vertex Z(u v)eE €v of Zp,

e cach biconnected subset U of D corresponds to a facet with inequality (1y | ) > wp,
where 1y :=|{a € A| |aNU| = 2}| counts the arcs of D with both endpoints in U.

Moreover, the Hasse diagram of the acyclic reorientation poset AR p is isomorphic to the graph
of Zp, oriented in the direction wp := Z(u,v)eA e, — e,. Note that the graphical zonotope Zp
only depends on the underlying undirected graph of the directed graph D, but that D determines
the direction wp. Finally, note that by Proposition 53, the graphical zonotope Zp is simple if
and only if D is chordful.

For instance, when D is a tournament on [n], the graphical zonotope Zp coincides up to a
translation of the vector 1 with the classical permutahedron, defined equivalently as

e the convex hull of the points 3., o; €; for all permutations o of [n],

i€]

e the intersection of the hyperplane {x € R" ‘ (1|x) = ("'2"1)} with the halfspaces
{xeR | (1y|z) > (lU‘;l)} for all proper subsets @ # U C [n],

o the Minkowski sum of the vector 1 and the segments [e;, e;] for all 1 <i < j <mn.

Some examples of graphical zonotopes are illustrated in Figures 5 and 16.
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FIGURE 16. The graphical zonotopes for the directed acyclic graphs of Figure 8. Their normal
fans are the graphical fans of Figure 14 and their graphs oriented appropriately are isomorphic to
the Hasse diagrams of the acyclic reorientation lattices of Figure 8. The rightmost zonotope is the
classical permutahedron. The middle zonotope is not simple while the other two are.

Quotientopes and associahedra. Assume now that D is skeletal as in Sections 4 and 5, so that
the acyclic reorientation poset AR p is a congruence uniform lattice by Proposition 25. The main
result of this section is the following statement.

Theorem 54. Assume that D is skeletal. For any congruence = of ARp, the quotient fan F= is
the normal fan of a polytope.

A quotientope is any polytopal realization of the quotient fan F—=. We provide two general
approaches to construct quotientopes in Theorems 56 and 58, and we discuss a third approach
specific to the coherent congruences in Proposition 62 and Problems 64 and 66.

An associahedron for D is any quotientope for the sylvester congruence =y, ). To avoid
any confusion, let us insist that the associahedron of the directed acyclic graph D is not the
associahedron of the underlying undirected graph G as defined by M. Carr and S. Devadoss
in [CDO06], except if D is a disjoint union of tournaments. In fact, as suggested in Problem 44 and
illustrated in Figure 17 (middle), the associahedron of D is not even always a simple polytope.

The Cambrian associahedra of D are the quotientopes for the Cambrian congruences = )
with U UQ = V. As already mentioned in Problem 46, not all Cambrian lattices have the same
number of elements. In fact, computer experiments on all skeletal directed acyclic graphs up to 6
vertices indicate that the following stronger version of Problem 46 should hold.

Problem 55. Prove the equivalence of the following assertions for a skeletal directed acyclic graph D:

(i) D has no induced subgraph isomorphic to &,

(ii) all Cambrian associahedra of D have the same number of vertices,
(iii) all Cambrian associahedra of D have isomorphic 1-skeleta,
(iv) all Cambrian associahedra of D have isomorphic face lattices.

Note that Points (i) and (iii) in Problem 55 are just geometric translations of Points (ii)
and (iii) in Problem 46. Point (iv) is a consequence of Point (iii) when the associahedron is a
simple polytope, since the face lattice of a simple polytope is determined by its graph [BML87,
Kal88]. However, Point (iv) is stronger than Point (iii) when the associahedron is not simple,
which happens when D has no induced subgraph isomorphic to & but some induced subgraph
isomorphic to & or & by Problem 44.
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Quotientopes from classical associahedra. Our first approach to realize the quotient fan F= as

the normal fan of a polytope is based on the associahedra [SS93, Lod04, HLO7]. Recall first that
when D is the increasing tournament on [n], the sylvester fan is the normal fan of the classical
associahedron, defined equivalently as
e the convex hull of the points Zje[n] UT,j)r(T,j)e; for all binary trees T on n nodes,
where £(T, j) and r(T, j) respectively denote the numbers of leaves in the left and right
subtrees of the node j of T' (labeled in inorder), see [Lod04],
e the intersection of the hyperplane {x € R" ‘ (1|x) = (”;rl)} with the halfspaces
{:B e R" ’ <1[a7b] | :c> > (b_;+2)} for all intervals 1 < a < b < n, see [SS93],
e (atranslate of) the Minkowski sum of A, ;) for all intervals 1 < a < b < n, where for I C [n],
A= conv{e; | i € I} is the face of the standard simplex A, labeled by I, see [Pos09].

Similar polytopal realizations were constructed for the quotient fans of the Cambrian congruences
in [HLO7, LP18] and of the permutree congruences in [PP18] of the weak order, using analogous
vertex and facet descriptions. The resulting associahedra and permutreehedra can also be written
as Minkowski sums and differences of faces of the standard simplex, though the description is not
as simple, see e.g. [Lan13]. Here, we skip the precise vertex, facet, and Minkowski descriptions of
all these polytopes and refer to [HLO7, LP18, Lan13, PP18] for details. We just need to observe
that the existence of these polytopes together with Proposition 35 ensure that the quotient fan of
the principal congruence =, of any rope p of D is the normal fan of an associahedron A, obtained
as an embedding of a Cambrian associahedron of [HL07] in RY. Mimicking [PPR22, Thm. 1], we
now observe that any quotient fan can be realized as the normal fan of a Minkowski sum of (low
dimensional) Cambrian associahedra of [HLOT].

Theorem 56. Assume that D is skeletal. Consider any congruence = of ARp, and let p1,...,pp
denote the ropes generating the lower ideal 1= of the subrope order. Then the quotient fan F= is

e the common refinement of the Cambrian fans F,, ..., F, ,
o the normal fan of the Minkowski sum of the Cambrian associahedra A, , ..., A, .

Proof. The first point is immediate since I= = 1,, U---UI, and the union of the walls of F= is the
union of the shards X, for p € I=. The second point follows from the fact that the Cambrian fan 7,
is the normal fan of the Cambrian associahedron A ,, and that the normal fan of a Minkowski sum
is the common refinement of the normal fans of the summands. O

Quotientopes from shard polytopes. Our second approach to realize the quotient fan F—= as the nor-

mal fan of a polytope is based on the shard polytopes of [PPR22]. Consider a rope p:= (u,v,V, A)
and let m denote the directed path from u to v in the transitive reduction of D. Define
e a p-alternating matching as a pair (M, M) with Mg, C {u} U7 and Ma C AU {v}
such that Mo and M are alternating along m,
e a p-fall (resp. p-rise) as a subset of the vertices of 7 situated between v and an arc (w,w’)
of 7 such that w € {u} U<y while w’ € AU {v} (resp. w € {u} UA while w’ € 57U {v}).
The shard polytope $P, of a rope p:= (u,v,57,4) is the polytope of RV defined equivalently as
e the convex hull of the vectors 1,7, — 1, for all p-alternating matchings M := (M, Ma),
e the subset of the plane H (orthogonal to the characteristic vectors of the connected com-
ponents of D) defined by
o zy =0forallvé {u,v} Uy UA,
0 Ty >0 for w € vy and z,, <0 for w € A,
o ZweF Ty < 1 for each p-fall F' and ZwER Ty > 0 for each p-rise R.

For instance, the shard polytope SP, of a rope of the form p:= (u,v, 7, @) is the face A{u,v}uv
of the standard simplex, translated by the vector —e,. We refer to [PPR22| for an alternative
definition of the shard polytope S$IP, as the matroid polytope of a series-parallel graph associated
to p. The following statement is the fundamental property of shard polytopes.

Proposition 57. Assume that D is skeletal. For any rope p of D, the union of the walls of the
normal fan of the shard polytope SP, contains the shard X, and is contained in the union of the
shards ¥, for all subropes p" of p.
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F1GURE 17. The associahedra for the directed acyclic graphs of Figure 8. Their normal fans
are the sylvester fans of Figure 15 and their graphs oriented appropriately are isomorphic to the
Hasse diagrams of the Tamari lattices of Figure 13. The rightmost associahedron is the classical
associahedron of [SS93, Lod04]. The middle associahedron is not simple while the other two are.

Proof. Tt was proved in [PPR22] when D is a tournament, and thus follows in general since the
shard polytope SP, is just an embedding of a classical shard polytope in RY. O

Based on Proposition 57, we obtain polytopal realizations of all lattice quotients of ARp as
Minkowski sums of shard polytopes.

Theorem 58. Assume that D is skeletal. For any congruence = of ARp and any positive coeffi-
cients s € (Rso)'=, the quotient fan F— is the normal fan of the Minkowski sum > per Sp 8P,

Proof. The normal fan of a Minkowski sum is the common refinement of the normal fans of the
summands. Hence, by Proposition 57, the union of the walls of the normal fan of ZPGH: s, 5P,
is precisely the union of the shards X, for all ropes p € I=. In other words, the normal fan
of 3° c1_ 8p SP, has the same walls as the quotient fan 7=, so that these two fans coincide. [

It follows that the Hasse diagram of the quotient AR p/= is isomorphic to the graph of the
polytope Zpe]l; s, 3P, oriented in the direction wp = Z(u,U)EA e, — e,. These Minkowski sums
are illustrated in Figure 17. It would be interesting to characterize which of these quotientopes are
simple, which is a reformulation of Problem 41 for arbitrary congruences and Problems 44 and 45
for Cambrian congruences.

Shard polytopes and deformed graphical zonotopes. A deformation of the graphical zonotope Zp
is any polytope whose normal fan coarsens the graphical fan Fp. Under dilation and Minkowski
addition, these deformations form a polyhedral cone, called the deformation cone of the graphical
zonotope Zp, whose interior is also called the type cone of the graphical fan Fp. We refer
to [Pos09, PRWO08, McM73, PPPP23, APR21, PPR22, PPP23, PPP21]| for more details on the
deformation cone of a polytope and type cone of a fan, in particular in the context of permutahedra
and associahedra.

For instance, deformations of the classical permutahedron were called generalized permutahedra
in [Pos09]. One important result on deformed permutahedra is that they can all be written as
Minkowski sum and difference of dilates of the faces of the standard simplex [Pos09, ABD10]. This
extends for graphical zonotopes as follows.

Proposition 59 ([PPP21]). For any directed acyclic graph D (not necessarily skeletal), any defor-
mation of Zip can be written as a Minkowski sum and difference of dilates of the faces /Ny of the
standard simplex A\, for all cliques K of D with |K| > 2. In fact, the faces Ay for all cliques K
of D with |K| > 2 form a linear basis of rays of the deformation cone of the graphical zonotope Z.p.
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Here, we just want to observe a similar property for shard polytopes when D is skeletal. We first
observe that it directly follows from [PPR22] that shard polytopes are Minkowski indecomposable
(thus correspond to certain rays of the deformation cone of the graphical fan Fp).

Proposition 60. When D is skeletal, any deformation of Zip can be written as a Minkowski sum
and difference of dilates of the shard polytopes SP, for the ropes p of D. In other words, the
shard polytopes SIP, for the ropes p of D form a linear basis of rays of the deformation cone of the
graphical zonotope Zp.

Proof. The same proof as [PPR22, Prop. 75] shows that the shard polytopes correspond to linearly
independent rays of the deformation cone of the graphical fan Fp. The fact that they indeed form
a basis is thus a consequence of Proposition 59 and Lemma 26 (i). O

When D is skeletal, we thus have two linear bases of the deformation cone of the graphical
fan Fp: the faces Ay provide a basis adapted to graphical fans of subgraphs of D, while the
shard polytopes $IP, provide a basis adapted to quotient fans of congruences of AR p.

The deformation cone of the graphical zonotope Zp is studied in details in [PPP21], with a
precise description of its facet description. In view of the recent results of [PPPP23, APR21,
PPP23], it seems relevant to investigate the deformation cones of quotientopes of congruences of
the acyclic reorientation lattices.

Problem 61. Provide a (irredundant) facet description of the deformation cones of the quotientopes
of D, in particular for the sylvester, Cambrian and coherent congruences.

Associahedra as removahedra. We now focus on quotientopes for coherent congruences and more

specifically on associahedra and Cambrian associahedra. Our next statement, illustrated in Fig-
ure 18, relates two constructions to obtain an associahedron for D:
e cither by deleting inequalities in the facet description of Zp, generalizing [SS93],
e or as Minkowski sums of faces of the standard simplex, generalizing [Pos09)].
Let us just recall from our discussion above that the graphical zonotope Zp
e lives in the affine subspace KJ'JFZ(W;)EA e, defined by the equations (1x | ) = |AN (§)|
for all connected components K of D, and
e is defined by the facet inequalities (1y | ) > ty for all biconnected subsets U of D,
where 1y :=|{a € A||aNU| = 2}| counts the arcs of D with both endpoints in U.

Proposition 62. Assume that D is skeletal. The sylvester fan F(y,g) is the normal fan of the
associahedron A p defined equivalently as
e the intersection of K+ + 2 (u,0)c 4 €v With the halfspaces {zeRY | (1y |x) > w} forall
biconnected subsets U of D which are connected in the transitive reduction of D,
o the Minkowski sum of the faces I\, of the standard simplex Ay, for all directed paths ™
in the transitive reduction of D whose endpoints are connected by an arc of D.

Proof. By definition, the subrope ideal Iy ) of the sylvester congruence contains precisely the
ropes of the form p:= (u, v, 7, @) for all arcs (u, v) of D. We have already mentioned that the shard
polytope SP, of a rope p:= (u,v, 7, @) is the face Ay vyuy Of the standard simplex, translated by
the vector —e,. It follows that the Minkowski sum of the faces A\ of the standard simplex A/,
for all directed paths 7 in the transitive reduction of D whose endpoints are connected by an arc
of D, is indeed an associahedron A p by Theorem 58.

We now prove the facet description of Ap. Observe first that Ap is indeed contained in
K+ + Z(u,v)eA e,. Moreover, since the normal fan of Ap is the sylvester fan Fy g), its rays
indeed correspond to the biconnected subsets of D which are connected in the transitive reduction
of D. For such a subset U, we have

mé%inAﬂ<1U |z) =;mlgglw<1U K =;5ng =HaeAllanU|=2}|=w,
where all sums range over the directed paths 7 in the transitive reduction of D whose endpoints
are connected by an arc of D. We conclude that the facet inequality of A p corresponding to U is
indeed given by (1y | ) > ty, which is the facet inequality of Zp corresponding to U. O
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FiGUrRE 18. The associahedra of Figure 17 are obtained by deleting inequalities in the facet
description of the graphical zonotopes of Figure 16.

In contrast, note that we are still missing a simple vertex description of the associahedron A p
similar to that of [Lod04] for the classical associahedron. We leave this question open for further
research.

Problem 63. Provide a simple formula to describe the vertex of the associahedron A p correspond-
ing to a partial acyclic reorientation of R(y,g).

We now switch to arbitrary Cambrian congruences =5,0) with U U Q = V. We believe that
Proposition 62 extends to any Cambrian congruence, generalizing [HLO7]. The proof however is
not as immediate and requires further investigation.

Problem 64. Prove that the Minkowski sum of the shard polytopes of the ropes of ;5 o) is obtained
by deleting from the facet description of the graphical zonotope Zp the inequalities normal to the
rays of the graphical fan Fp that are not rays of the quotient fan F5 o) (i.e. the inequalities given
by the biconnected subsets U of D such that exist u,v,w € V with w along a directed path in D
joining u to v such that u,v € U and w € U\ U, or u,v ¢ U and w € QNU).

Let us now switch to arbitrary coherent congruences =, ). As already observed in [PPR22],
Proposition 62 fails when UNS # & or BUN # V. Indeed, the classical permutahedron is actually
not a positive Minkowski combination of the shard polytopes, see [PPR22, Coro. 59]. However, we
still conjecture that removing the appropriate inequalities in the facet description of the graphical
zonotope Zp defines a realization of the quotient fan F(;5 ) of any coherent congruence, which is
proved in [PP18, APR21] when D is a tournament. This still requires some work.

Problem 65. Prove that for any U, C V, the quotient fan F ;5 o) is the normal fan of the polytope
obtained by deleting from the facet description of the graphical zonotope Zp the inequalities
normal to the rays of the graphical fan Fp that are not rays of the quotient fan F q).

Finally, we switch to arbitrary congruences of ARp. when D is a tournament, it was shown
in [APR21] that the permutree congruences are the only congruences of the weak order whose
quotient fan can be realized by deleting inequalities in the facet description of the classical permu-
tahedron. The analogue statement still needs to be investigated for an arbitrary skeletal directed
acyclic graph D.

Problem 66. Prove that the coherent congruences are the only congruences of AR p whose quotient
fan F= can be realized by deleting from the facet description of the graphical zonotope Zp the
inequalities normal to the rays of the graphical fan Fp that are not rays of the quotient fan F=.
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7. POSETS OF REGIONS OF HYPERPLANE ARRANGEMENTS

To conclude, we discuss the possible extensions of our results to the posets of regions of arbitrary
hyperplane arrangements studied by A. Bjérner, P. Edelman and G. Ziegler in [Ede84, BEZ90].
Let A be a finite collection of non-zero vectors in R™ which all belong to a halfspace. Consider

e the arrangement H 4 formed by the hyperplanes {z € R" | (z | a) = 0} for a € A,
e the zonotope Z 4 defined as the Minkowski sum of all segments [—a, a] for a € A.

These two objects are normal to each other: the regions of H 4 correspond to the vertices of Z 4
and the rays of Ha correspond to the facets of Z 4. We say that a region R of H4 lies on
the positive (resp. negative) side of @ € A if it lies in the halfspace where the scalar product
with a is positive (resp. negative). The positive set of a region R is the subset of vectors of A for
which R lies on the positive side. The region B on the negative side of all vectors in A is called
the base region. The poset of regions R 4 is the partial order on all regions of H 4 ordered by
inclusion of their positive sets. In other words, the Hasse diagram of this poset is the graph of the
zonotope Z 5 oriented in the direction Zae 4 a. For instance, as already discussed in Section 6,
the acyclic reorientation poset ARp of a directed acyclic graph D is isomorphic to the poset of
regions R a,, of the incidence configuration Ap:= {e, — e, | (u,v) € D} of D. In general, it was
proved in [Ede84, BEZ90] that

e if the poset of regions R 4 is a lattice, then the base region B is simplicial (or dually if the
cone generated by A is simplicial),
e if the arrangement H 4 is simplicial, then the poset of regions R 4 is a lattice.

We also note that N. Reading showed in [Real6] that the poset of regions R 4 is a congruence
uniform lattice if and only if H 4 is tight with respect to B, meaning that for each region R of H 4,
every pair of upper (resp. lower) facets of R with respect to B intersects in a codimension 2 face.
However, there is still no characterization of the collections of vectors A whose poset of regions R 4
is a lattice. In view of Theorem 1, it is natural to consider the following conditions.

Proposition 67. The following conditions are equivalent for a set A of non-zero vectors in R™:

o for any linear hyperplane H of R™, the cone generated by the vectors of ANH is simplicial,
o for any d-dimensional face F of Z A, the source of ' in R o has degree d in IF.

Proof. Given a linear hyperplane H of R", let IF be the face of Z 4 maximizing the dot product
with a normal vector of H. Conversely, given a face I of Z 4, let H be an arbitrary supporting
hyperplane of IF. Then the cone generated by A N H is simplicial if and only if the source of I
in R 4 is a simple vertex of F. O

The conditions of Proposition 67 just translate to arbitrary arrangements the conditions of
Theorem 1 for graphical arrangements. Indeed, for a directed acyclic graph D, choosing a face F
of Zp is choosing an ordered partition (u,w) of D, and requiring the source of F in R 4 to be a
simple vertex is equivalent to requiring that the transitive reduction of the subgraph of D induced
by each part of u is a forest. It is not difficult to see that these conditions are necessary for R a4
to be a lattice.

Lemma 68. If the poset of regions Ra is a lattice, then A fulfills the conditions of Proposition 67.

Proof. Fix a linear hyperplane H of R™, and let IF be one of the two faces of Z 4 whose supporting
hyperplanes are parallel to H. Then the restriction of R 4 to the vertices of IF is an interval of R 4
isomorphic to the poset of region Rang. Since R 4 is a lattice, we obtain that R ang is a lattice
and thus that the cone generated by the vectors of A N H is simplicial. O

However, in contrast to Theorem 1 for graphical arrangements, the conditions of Proposition 67
are not sufficient for R 4 to be a lattice. Note that the first counter-examples arise in dimension 4
(since in dimension 3, the poset of regions is a lattice as soon as the base region is simplicial [BEZ90,
Thm. 3.2], which is implied by the conditions of Proposition 67). The following counter-example
is an adaptation of [BEZ90, Exm. 3.3].
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Example 69. The set A of vectors

1 0 -1 2 0 0
0 1 -2 1 0 0
0 0 -1 1 1 0
0 0 0 0 -1 -1

fulfills the conditions of Proposition 67 but the poset of regions R 4 is not a lattice.

Even if the conditions of Proposition 67 fail to characterize the collections of vectors whose
poset of regions is a lattice, they might be sufficient for certain well-behaved collections of vectors,
in particular for subsets of root systems of finite Coxeter groups. It holds for root systems of rank
at most 3 by [BEZ90, Thm. 3.2], for all type A root systems by Theorem 1, and was checked by
computer experiments for the type Dy root system. However, it already fails in type By.

Example 70. The set A of vectors

1 0 0 0 1 0
0 1 0 0 1 1
0 0 1 0 1 2
0 0 0 1 0 2

of the type By root system fulfills the conditions of Proposition 67 but the poset of regions R 4 is
not a lattice.

In contrast to the satisfactory characterization of the poset of regions which are congruence
uniform lattices [Real6], the characterization of the posets of regions which are just lattices thus
remains largely open.
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