
1 / 41 2024 : 13

Orbit-Finite-Dimensional
Vector Spaces and
Weighted Register
Automata

Received Apr 18, 2023
Accepted Feb 15, 2024
Published May 6, 2024

Key words and phrases
set with atoms, orbit-finite set,
orbit-finite-dimensional space,
weighted automaton, register
automaton

Mikołaj Bojańczyka � �

Joanna Fijalkowa,b � �

Bartek Klinc � �

Joshua Moermand � �

a University of Warsaw, Poland

b University of Bordeaux, CNRS,
LaBRI, Talence, France

c University of Oxford, UK

d Open Universiteit, Heerlen, The
Netherlands

ABSTRACT. We develop a theory of vector spaces spanned by orbit-finite sets. Using this
theory, we give a decision procedure for equivalence of weighted register automata, which are
the common generalization of weighted automata and register automata for infinite alphabets.
The algorithm runs in exponential time, and in polynomial time for a fixed number of registers.
As a special case, we can decide, with the same complexity, language equivalence for unam-
biguous register automata, which improves previous results in three ways: (a) we allow for
order comparisons on atoms, and not just equality; (b) the complexity is exponentially better;
and (c) we allow automata with guessing.

1. Introduction

Weighted automata over a field were introduced in [20] by Schützenberger. Such an automaton
is defined in the same way as a nondeterministic automaton, with a set 𝑄 of states and an input
alphabet Σ, except that instead of having subsets for transitions, initial and final states, the

An extended version of the LICS 2021 paper [7]. Mikołaj Bojańczyk was supported by the Polish National Science Centre
(NCN) grant “Polynomial finite state computation” (2022/46/A/ST6/00072). Joanna Fijalkow was supported by the project
BOBR that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No. 948057).

Cite as Mikołaj Bojańczyk, Joanna Fijalkow, Bartek Klin, Joshua Moerman.
Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata.
TheoretiCS, Volume 3 (2024), Article 13, 1-41.

https://theoretics.episciences.org
DOI 10.46298/theoretics.24.13

ar
X

iv
:2

10
4.

02
43

8v
4

 [
cs

.F
L

]
 3

 M
ay

 2
02

4

mailto:bojan@mimuw.edu.pl
https://orcid.org/0000-0002-7758-1072
mailto:joanna.fijalkow@gmail.com
https://orcid.org/0000-0003-0945-0801
mailto:bartek.klin@cs.ox.ac.uk
https://orcid.org/0000-0001-5793-7425
mailto:joshua.moerman@ou.nl
https://orcid.org/0000-0001-9819-8374

2 / 41 M. Bojańczyk, J. Fijalkow, B. Klin, J. Moerman

automaton has weight functions into the underlying field:

𝐼 : 𝑄 → F︸ ︷︷ ︸
initial

𝛿 : 𝑄 × Σ × 𝑄 → F︸ ︷︷ ︸
transition

𝐹 : 𝑄 → F︸ ︷︷ ︸
final

.

The weight of a run is obtained by multiplying the weights along all transitions, the initial weight
of the first state, and the final weight of the last state. The automaton recognizes a weighted
language, which is the function 𝐿 : Σ∗ → F that maps a word to the sum of weights of all runs
on that word.

Schützenberger proved that weighted automata can be minimized [20, Sec. B], which
provides a polynomial time algorithm for equivalence. In contrast, it is undecidable whether
some field element 𝑎 ∈ F is achieved as the weight of some word, already in the special case of
weighted automata that are probabilistic [17, Thm. 22]. Equivalence is undecidable for weighted
automata over semirings that are not fields, e.g. for the min-plus semiring [14, Cor. 4.3].

One application of weighted automata (see [1] for other ones) is a polynomial time algo-
rithm for language equivalence of unambiguous automata, i.e. nondeterministic finite automata
that have at most one accepting run for every word. The algorithm is a simple reduction to
equivalence of weighted automata: a nondeterministic automaton can be viewed as a weighted
automaton over the field of rational numbers, such that the weight of a word is the number of
accepting runs. For unambiguous automata, the number of accepting runs is either zero or one,
and hence two unambiguous automata accept the same words if and only if the corresponding
weighted automata are equivalent.

In this paper, we generalize weighted automata to infinite alphabets, motivated by the
study of register automata, in particular the equivalence problem for unambiguous register
automata [2, 9, 15, 16]. The kinds of infinite alphabets that we study are constructed using an
infinite setA of atoms (also called data values) which can only be accessed in very limited ways;
in the simplest case, they can only be compared for equality. Register automata are like finite
automata, except that they additionally use finitely many registers to store atoms that occurred
in the word. They were introduced by Kaminski and Francez [12, Def. 1], under the name of finite
memory automata. This model has attracted much attention, and register automata are now one
of the most widely studied infinite state systems. Their decidability landscape is rather complex:
for example, emptiness is decidable for nondeterministic register automata [12, Thm. 1], but
universality is not [18, Thm 5.1]. More robust results can be achieved for deterministic register
automata, but at a considerable loss of expressive power.

One of the numerous (unfortunately non-equivalent) variants of register automata are
unambiguous register automata, for which language equivalence was shown in [16, Thm. 1]
to be decidable in 2ExpSpace, and in ExpSpace for a fixed number of registers. These upper
bounds were improved to 2ExpTime and ExpTime, respectively, in [2, Thm. 2]. None of these
proofs use weighted automata.

3 / 41 Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata

From the point of view of register automata, the main contributions of this paper are:
1. We introduce a weighted version of register automata, and we prove that their equivalence

problem can be solved in ExpTime, and in polynomial time for a fixed number of registers.
2. We show that our weighted automata have a robust theory, in particular they can be

described in several different ways and admit canonical syntactic automata.
3. As an immediate application of our equivalence algorithm for weighted automata, we

show that the language equivalence problem for unambiguous register automata can be
solved in the same complexity, improving exponentially on prior work [2, 16].

4. In [2, 16], the equivalence algorithms work only for automata which are non-guessing,
in the sense that every pair (state, input letter) has finitely many outgoing transitions.
Without the non-guessing assumption, decidability is only known in the case where one
of the automata has just a single register [15, Thm. 10]. Our algorithm can be adapted so
that it works for general unambiguous automata, without the non-guessing assumption,
with the same complexity.

5. Apart from atoms with equality only, our algorithm for weighted automata, and its ap-
plications to unambiguous automata, also work for atoms equipped with a total order.
Previous algorithms for ordered atoms assume that one of the automata has a single
register [16, Thm. 2].

In our opinion, perhaps the most interesting aspect of this paper is not the applications
described above, but the theory that is developed in order to obtain them: elements of linear
algebra in the universe of sets with atoms [5], also known as nominal sets [19]. Our central
objects of study are vector spaces which are spanned by orbit-finite set of vectors. A typical
example is the vector space Lin(A𝑘), which consists of finite linear combinations of 𝑘-tuples
of atoms. Such a vector space has two kinds of structure: we can take linear combinations of
vectors, and we can apply atom automorphisms to them. A natural concept – which appears in
our equivalence algorithm for weighted automata – is the equivariant subspaces, i.e. subsets
of the vector space closed under both linear combinations and atom automorphisms. Our
principal technical result is that for every 𝑘, there is a finite (exponential in 𝑘) bound on the
maximal length of chains

𝑉1 ⊊ 𝑉2 ⊊ · · · ⊊ 𝑉𝑛︸ ︷︷ ︸
equivariant subspaces

⊆ Lin(A𝑘).

This bound is enough to obtain an algorithm for checking equivalence on weighted automata.
For other problems, such as automata minimization, we need to go beyond vectors spaces of the
form Lin(A𝑘) and consider the more general class of spaces which are spanned by orbit-finite
sets. Since the axiom of choice fails for sets with atoms (see e.g. [19, Sec. 2.7]), these orbit-finitely
spanned spaces may not admit equivariant bases. On the other hand, they are closed under

4 / 41 M. Bojańczyk, J. Fijalkow, B. Klin, J. Moerman

subspaces, Cartesian products, tensor products and dual spaces. We hope that these results can
be used in future work, beyond applications to unambiguous automata.

The structure of the paper is as follows. In Section 2 we recall the basics of sets with
atoms and orbit-finite sets, with particular focus on equality and ordered atoms. In Section 3
we introduce weighted orbit-finite automata and state our main result about checking their
equivalence, Theorem 3.5. In Section 4 we leave automata aside, and we study vector spaces of
the form Lin𝑄, for orbit-finite sets 𝑄. We prove, in Theorem 4.8 and Corollary 4.9, that these
spaces have finite length for equality and ordered atoms. These results are used in Section 5
to provide an algorithm for checking equivalence, thereby proving Theorem 3.5. In Section 6
we study the general notion of orbit-finitely spanned vector spaces and prove their numerous
closure properties. This is used in Section 7 to introduce the class of orbit-finitely spanned
automata, which have the same expressive power as weighted orbit-finite automata but admit
minimization. As another application, in Section 8 we develop a new algorithm for equivalence
checking for unambiguous register automata.

This is an extended version of the conference paper [7]. In addition to full proofs of several
results, including a new and vastly simplified proof of Theorem 4.8, it settles several questions
left open in [7]. In particular, we give an exponential lower bound on length (Section 4.3), an
example of an atom structure where the finite length property fails (Section 4.4), and a proof
that orbit-finitely spanned spaces over graph atoms are not closed under duals (Example 6.9 in
Section 6).

2. Orbit-finite sets

Our paper is based on the approach to register automata that uses sets with atoms. The idea is to
consider automata where all components are closed under atom automorphisms, and the states
and input alphabets have finitely many elements up to atom automorphisms. This abstract
view avoids cumbersome notation for representing states and transitions of register automata.
We can also leverage existing results that treat atoms with more structure than equality only,
e.g., with a total order.

Our notation is based on [5]. Fix a countably infinite relational structure A, in the sense
of model theory, i.e. an underlying set equipped with some relations. Elements of this fixed
structure will be called atoms. In this paper we mostly focus on two such structures:

the equality atoms A = (N,=), and
the ordered atoms A = (Q, <).

The main results of this paper, notably the finite length property in Section 4, are proved for
these atoms only, and we leave other atoms as future work.

An atom automorphism is any bijection of the underlying set of atoms which is consistent
with all relations in A. For the equality atoms this is any permutation of N; for the ordered

5 / 41 Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata

atoms, any order-preserving bijection on Q. In both settings, the set of all atoms is orbit-finite,
which means that it has finitely many elements up to atom automorphisms. Other orbit-finite
sets constructed with atoms include:

A𝑘︸︷︷︸
𝑘-tuples of atoms

A(𝑘)︸︷︷︸
non-repeating

𝑘-tuples of atoms

(A
𝑘

)︸︷︷︸
sets of 𝑘 atoms

. (1)

To formally define “sets constructed with atoms” and the orbit-finite restriction, we use
the cumulative hierarchy from set theory. (See [5, Sec. 3.1] or [19, Sec. 2.6] for a more detailed
presentation.) The cumulative hierarchy (over atoms A) is indexed by ordinal numbers, and
defined as follows: on level 0 we find the atoms, and on the level indexed by an ordinal 𝛼 > 0
we find the atoms and all sets whose elements are from levels < 𝛼. For example, on level 1
we find every subset of the atoms. Automorphisms 𝜋 : A→ A of the atoms act on sets in the
cumulative hierarchy in the expected way.

In the cumulative hierarchy one can encode data structures such as tuples, words, relations,
functions etc., using standard set-theoretic machinery. Automorphisms 𝜋 then act on tuples as
expected: 𝜋((𝑥1, . . . , 𝑥𝑛)) = (𝜋(𝑥1), . . . , 𝜋(𝑥𝑛)).

For a tuple of atoms 𝑎 ∈ A∗, an 𝑎-automorphism is an atom automorphism 𝜋 such that
𝜋(𝑎) = 𝑎. A tuple 𝑎 is said to support an element 𝑥 of the cumulative hierarchy if 𝜋(𝑥) = 𝑥

for every 𝑎-automorphism 𝜋. We say that an element 𝑥 of the cumulative hierarchy is finitely
supported if it is supported by some tuple of atoms in A∗. An element is called equivariant if it is
supported by the empty tuple. An equivariant set may contain non-equivariant elements; e.g.,
the set of all atoms is equivariant, but its elements are not. A set with atoms is defined to be a
set in the cumulative hierarchy which is finitely supported and with each of its members (and
their members, and so on) finitely supported.

Sets with atoms provide a relaxed notion of finiteness, called orbit-finiteness. We say that
two sets with atoms 𝑥 and 𝑦 are in the same 𝑎-orbit if there is some 𝑎-automorphism 𝜋 such that
𝑦 = 𝜋(𝑥). Being in the same 𝑎-orbit is clearly an equivalence relation; its equivalence classes
are called 𝑎-orbits. A set with atoms 𝑥 is called orbit-finite if there is some atom tuple 𝑎 such
that 𝑥 is a finite union of 𝑎-orbits.

EXAMPLE 2 .1. Over equality atoms, the set A of atoms is orbit-finite, also for every
𝑘 ∈ {1, 2, . . .} the sets A(𝑘) and

(A
𝑘

)
from (1) are orbit-finite, with a single equivariant orbit

each. The set A𝑘 is also orbit-finite, with the number of equivariant orbits equal to the
𝑘-th Bell number, i.e., the number of equivalence relations on the set {1, . . . , 𝑘}.
Over ordered atoms, the sets A and

(A
𝑘

)
have single equivariant orbit each. The set A(𝑘) is

also orbit-finite, with 𝑘! equivariant orbits; one of these orbits is the increasing 𝑘-tuples of
atoms. Each of these orbits is in equivariant bijection with

(A
𝑘

)
.

6 / 41 M. Bojańczyk, J. Fijalkow, B. Klin, J. Moerman

Over ordered atoms, for every atom 𝑎 ∈ A the set A − {𝑎} has two 𝑎-orbits: the open
intervals (−∞; 𝑎) and (𝑎;∞).
The set A∗ is not orbit-finite, neither for equality nor for ordered atoms, as words of
different length are necessarily in distinct orbits.

■

An atom structure A is called oligomorphic if for every 𝑘, the set A𝑘 is orbit-finite. For
oligomorphic atoms, orbit-finite sets behave well, e.g. they are closed under finite products and
finitely supported subsets [5, Lem. 3.24]. In this paper we only consider oligomorphic atoms; in
particular, equality and ordered atoms are oligomorphic.

Orbit-finite sets can be represented in a finite way so that they can be used as inputs for
algorithms. Two examples of such representations are set builder expressions [5, Sec. 4.1] or
the 𝐺-set representation [6, Sec. 8]. The reader does not need to know these representations
in detail; the important thing is that they support basic operations such as products, Boolean
operations, or inclusion and membership checks.

3. Weighted orbit-finite automata

We now introduce the main model for this paper, an orbit-finite generalization of weighted
automata.

DEF IN IT ION 3.1 (Weighted orbit-finite automaton). Fix an oligomorphic atom structure A
and a field F. A weighted orbit-finite automaton consists of orbit-finite sets 𝑄 and Σ, called the
states and the alphabet, and finitely supported functions

𝐼 : 𝑄 → F︸ ︷︷ ︸
initial

𝛿 : 𝑄 × Σ × 𝑄 → F︸ ︷︷ ︸
transitions

𝐹 : 𝑄 → F︸ ︷︷ ︸
final

.

Furthermore, we always require the non-guessing condition:
(*) there are finitely many states with nonzero initial weight, and also for every state 𝑞 and

input letter 𝑎, there are finitely many states 𝑝 such that the transition (𝑞, 𝑎, 𝑝) has nonzero
weight.

Weights of runs and words is defined in the same way as for the classical model of weighted
automata with finitely many states. The non-guessing condition ensures that each word has
only finitely many runs with non-zero weight; otherwise there could be difficulties in summing
up the weights of infinitely many runs. Intuitively, the condition means that an automaton
cannot spontaneously invent a fresh atom.

EXAMPLE 3.2. Consider any oligomorphic atoms A and the field of rational numbers. We
define a weighted orbit-finite automaton which maps a word 𝑤 ∈ A∗ to the number of distinct

7 / 41 Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata

atoms that appear in 𝑤. The states are

{⊥}︸︷︷︸
initial weight 1
final weight 0

+ A︸︷︷︸
initial weight 0
final weight 1

for some ⊥ ∉ A. The transition weight is 1 for all triples

(⊥, 𝑎,⊥) (⊥, 𝑎, 𝑎) (𝑎, 𝑏, 𝑎) for 𝑎 ≠ 𝑏 ∈ A,

and 0 for all other triples. For every input word, all runs have weight 0, except for the following
runs, which have weight 1: start in ⊥, stay there until the last occurrence of some atom 𝑎, and
then stay in state 𝑎 until the end of the word. Since the number of runs with weight 1 is the
number of distinct atoms 𝑎 that appear in the word, the output of the automaton is the number
of distinct atoms.

This automaton is equivariant, in the sense that its state space and all three weight functions
are equivariant. ■

EXAMPLE 3.3. The automaton in the previous example is a special case of a more general
construction: counting accepting runs of a nondeterministic automaton. Define a nondetermin-
istic orbit-finite automaton like a nondeterministic finite automaton, except that all components
(the alphabet, states, transitions, initial and accepting sets) are required to be orbit-finite sets,
see [5, Def. 5.7]. To such an automaton A one can associate a weighted orbit-finite automaton
(over the field of rational numbers) as follows: the alphabet and states are the same, and:

a state gets an initial weight 1 if it was initial in A, otherwise its initial weight is 0;
a state gets an final weight 1 if it was accepting in A, otherwise its initial weight is 0;
transition weight is 1 for all transitions present in A and 0 for the ones absent in A.

This weighted automaton maps a word to the number of accepting runs of A. The construction
makes sense only if A is non-guessing in the sense that there are finitely many inputs states,
and for every pair (state, letter) there are finitely many outgoing transitions. ■

As mentioned in Section 2, orbit-finite sets can be represented in a finite way. Therefore,
weighted orbit-finite automata can also be represented in a finite way (assuming that field
elements can be represented in a finite way). This is because (a) a finitely supported relation on
an orbit-finite set is also orbit-finite; and (b) a finitely supported function from an orbit-finite
set to any set is itself an orbit-finite set.

EXAMPLE 3.4. A special case of weighted orbit-finite automata, where the finite representa-
tion is easier to see, is a weighted 𝑘-register automaton. This is a weighted orbit-finite automaton
where the input alphabet is finitely many disjoint copies of the atoms, the states are finitely
many copies of (A + {⊥})𝑘, and all weight functions are equivariant. For equality and ordered
atoms, the weight functions can be finitely represented using quantifier-free formulas, see [5,

8 / 41 M. Bojańczyk, J. Fijalkow, B. Klin, J. Moerman

p. 6]; as a result, weighted register automata appear as a straightforward weighted version of
register automata as introduced in [12]. We will focus on this special case in Section 8. ■

We now state the main result of this paper, which is an algorithm for checking the equiva-
lence of weighted orbit-finite automata, assuming that the atom structure is either the equality
atoms or the ordered atoms. We do not know if the problem is decidable for other atom
structures.

THEOREM 3.5. Assume that the atoms are the equality atoms (N,=) or the ordered atoms
(Q, <). The equivalence problem for equivariant1 weighted orbit-finite automata can be solved in
deterministic time

2poly(𝑘) · 𝑛𝑂(𝑘)

where
𝑛 is the orbit count, i.e. the number of equivariant orbits in the disjoint union of the two state

sets;
𝑘 is the atom dimension of the state spaces of the automata, i.e. the smallest 𝑘 such that every

state in both automata is supported by at most 𝑘 atoms.

In particular, the equivalence problem is in ExpTime, and polynomial time when the atom dimen-
sion 𝑘 is fixed.

A lower bound for the problem is PSpace, which is the complexity of language equiva-
lence of deterministic register automata. We do not know the exact complexity; it is worth
pointing out that for weighted finite automata there is an equivalence algorithm in randomized
polylogarithmic parallel time [13, Sec. 3.2] that uses the Isolating Lemma.

We now present a proof strategy for the theorem, which will be carried out in the next
sections. The first observation is that the equivalence problem reduces to the zeroness problem,
which asks whether a single weighted orbit-finite automaton outputs zero for every word. The
reduction is as follows: given two equivariant weighted orbit-finite automata A1 and A2, we
create a new weighted orbit-finite automaton A1 − A2, which is obtained by taking the disjoint
union of A1 and A2, and flipping the sign of the final weights in A2. The new automaton maps
all words to zero if and only if the original two automata were equivalent. Also, in the reduction,
the atom dimension does not change, neither does the orbit count.

It remains to give an algorithm for zeroness of a single equivariant weighted orbit-finite
automaton, with states 𝑄. Our proof follows the same lines as Schützenberger’s algorithm.
Write Lin𝑄 for the set of finite linear combinations (over the field F) of states, seen as a vector
space with basis 𝑄. For an input word 𝑤, define its configuration to be the vector in Lin𝑄 which

1 This theorem would also work for finitely supported automata, but the notation for the complexity and orbit counts
would be more involved.

9 / 41 Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata

maps a state 𝑞 to the sum of pre-weights of all runs over 𝑤 that end in state 𝑞; the pre-weight
of a run is defined by multiplying the initial weight of the first state and the weights of all
transitions, without taking into account the final weights. Thanks to the non-guessing condition
(*) in Definition 3.1, each configuration is indeed a finite linear combination, since there are
finitely many runs with nonzero pre-weight. Consider the chain

𝑉0 ⊆ 𝑉1 ⊆ 𝑉2 ⊆ · · · ⊆ Lin𝑄

where 𝑉𝑖 is the subspace of Lin𝑄 that is spanned by the configurations of words of length at
most 𝑖. (We do not intend to compute the subspaces in this chain, whatever that would mean;
the chain is only used in the analysis of the algorithm.) Because the automaton is equivariant,
one can easily see that each subspace 𝑉𝑛 is also equivariant.

In the finite-dimensional case studied by Schützenberger, where 𝑄 was a finite set, we
could conclude that the chain must stabilize in a number of steps that is bounded by the
finite dimension of the vector space Lin𝑄. In the orbit-finite case, the vector space has infinite
dimension, and thus it is not clear why the chain should stabilize in finitely many steps. Our
main technical contribution is a proof that the chain does indeed stabilize, and furthermore the
time to stabilize is consistent with the bounds in the statement of Theorem 3.5. This stabilization
property is the subject of the next section, and in Section 5 we shall use the property to conclude
the proof of Theorem 3.5.

4. Finite length property

A standard result in linear algebra says that a vector space has finite dimension if and only
if it has finite length, where the length is defined to be the longest chain of its subspaces.
Indeed, the length of a finite-dimensional space is equal to its dimension. Because of this easy
correspondence the notion of length is seldom explicitly applied to vector spaces, and it becomes
more important only in more general structures such as modules over a ring. However, the
situation becomes more interesting for chains of equivariant subspaces. We define:

DEF IN IT ION 4.1 (Length). The length of an equivariant vector space 𝑉 , denoted length(𝑉), is
the maximal length 𝑛 of a chain of proper inclusions on equivariant subspaces of 𝑉 :

𝑉1 ⊊ 𝑉2 ⊊ · · · ⊊ 𝑉𝑛 ⊊ 𝑉.

If a maximal length does not exist, we say that 𝑉 has infinite length. An atom structure A has
the finite length property if for every number 𝑘, the vector space LinA𝑘 has finite length.

The finite length property easily implies oligomorphicity. As we shall see in Section 4.4,
the converse implication does not hold. But first, let us consider the two basic atom structures.

10 / 41 M. Bojańczyk, J. Fijalkow, B. Klin, J. Moerman

4.1 Equality and ordered atoms

The purpose of this section is to prove that both the equality atoms (N,=) and the ordered
atoms (Q, <) have the finite length property (Corollary 4.9 and Theorem 4.8, respectively).
Furthermore, the length of LinA𝑘 grows exponentially (and not worse) with 𝑘. The results of
this section apply to an arbitrary field F.

Definition 4.1 speaks of equivariant subspaces. Later, in Theorem 4.10, we will show
that for the equality and ordered atoms, allowing a fixed non-empty support would make no
difference.

EXAMPLE 4.2. Consider the equality atoms. The vector space LinA has length 2, because it
has exactly 3 equivariant subspaces which form a chain of two proper inclusions:

{0} ⊊ 𝑉 ⊊ LinA,

where 𝑉 is the subspace spanned by the set

{𝑎 − 𝑏 : 𝑎 ≠ 𝑏 ∈ A}.

Equivalently, 𝑉 is the vector space of all vectors where all coefficients sum up to 0. Let us prove
that there are no other equivariant subspaces. Suppose that 𝑊 is an equivariant subspace
which contains some nonzero vector

𝑤 = 𝜆1𝑎1 + · · · + 𝜆𝑛𝑎𝑛 where 𝜆𝑖 ∈ F \ {0}. (2)

Since 𝑊 is equivariant, it also contains the vector obtained from 𝑤 by replacing 𝑎𝑛 with some
fresh atom 𝑏𝑛. By taking the difference of these vectors and dividing by 𝜆𝑛, we see that 𝑊
contains 𝑎𝑛 − 𝑏𝑛. By equivariance,𝑊 contains all vectors of the form 𝑎 − 𝑏 for distinct atoms
𝑎, 𝑏, and thus 𝑉 ⊆ 𝑊 .

We now show that𝑊 is either𝑉 or the entire space LinA. Indeed, suppose that𝑊 contains
some 𝑤 as in (2) that is not in𝑉 . If 𝑛 > 1 then we can subtract from 𝑤 the vector 𝜆1 · (𝑎1−𝑎2) ∈ 𝑉 ,
which results in another vector that is in 𝑊 but not in 𝑉 , with a smaller 𝑛. By repeating this
process, we see that𝑊 contains a vector of the form 𝜆1𝑎1 with 𝜆1 ≠ 0, and hence, by equivariance,
it is the entire space. ■

Definition 4.1 differs from the classical definition of length in that we only consider equiv-
ariant subspaces. Some classical properties of length easily transfer to our case. One may even
say that our definition is a special case of the classical one: an equivariant vector space can be
seen as a module over the (non-commutative) group ring F[𝐺], where F is the underlying field
and 𝐺 is the automorphism group of A. To keep the presentation elementary we do not pursue
this correspondence, but we remark that all properties of length which are valid for modules
over (non-commutative) rings, remain true for our definition. For example, the following lemma

11 / 41 Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata

has the same proof (see Appendix A) as for the classical notion of length of a module (see e.g. [11,

Prop. 4.12]), and works for arbitrary oligomorphic atoms:

LEMMA 4.3. For any equivariant spaces 𝑉 ⊆ 𝑊 , and equivariant sets 𝑃, 𝑄 with their disjoint
union 𝑃 + 𝑄:

(i) length(𝑊) = length(𝑉) + length(𝑊/𝑉);2

(ii) length(Lin(𝑃 + 𝑄)) = length(Lin 𝑃) + length(Lin𝑄);
(iii) if there is an equivariant surjective function from 𝑃 to 𝑄 then length(Lin𝑄) ≤ length(Lin 𝑃).

From this we infer that in Definition 4.1, we could have equivalently talked about arbitrary
equivariant orbit-finite set, instead of just sets of the form A𝑘:

COROLLARY 4.4. For atoms with the finite length property, Lin𝑄 has finite length for every
equivariant orbit-finite 𝑄.

PROOF . An orbit-finite set is a finite disjoint union of single-orbit sets, and for oligomorphic
atoms every single-orbit set 𝑄 is an image of a surjective function from A𝑘 [6], for 𝑘 the atom
dimension of 𝑄. Hence, we can use the closure properties from Lemma 4.3. ■

The following lemma is the key step in proving the finite length property for the equality
and ordered atoms:

LEMMA 4.5. Consider the ordered atoms A = (Q, <). For every 𝑘, the length of Lin
(A
𝑘

)
is finite,

and satisfies
length

(
Lin

(A
𝑘

))
≤ 1 + 𝑘 · length

(
Lin

(A
𝑘−1

))
.

PROOF . For any set 𝛼 of 2𝑘 atoms:

𝑎1 < 𝑏1 < · · · < 𝑎𝑘 < 𝑏𝑘︸ ︷︷ ︸
𝛼

(3)

and for any 𝐼 ⊆ 𝑘 = {1, . . . , 𝑘}, define 𝛼 ⋊ 𝐼 ∈
(A
𝑘

)
by:

𝛼 ⋊ 𝐼 = {𝑎𝑖 | 𝑖 ∉ 𝐼} ∪ {𝑏𝑖 | 𝑖 ∈ 𝐼}.

In words, 𝛼 ⋊ 𝐼 picks either 𝑎𝑖 or 𝑏𝑖 from 𝛼 according to 𝐼 . Define the cog (on 𝛼), 𝜈𝛼 ∈ Lin
(A
𝑘

)
, to

be the vector:
𝜈𝛼 =

∑︁
𝐼⊆𝑘

(−1) |𝐼 | (𝛼 ⋊ 𝐼).

For example, for 𝑘 = 2, the cog on 4 atoms 𝛼 = {𝑎1, 𝑏1, 𝑎2, 𝑏2} ordered as in (3) is the vector:

𝜈𝛼 = {𝑎1, 𝑎2} − {𝑎1, 𝑏2} − {𝑏1, 𝑎2} + {𝑏1, 𝑏2} ∈ Lin
(A

2
)
.

2 Here 𝑊/𝑉 denotes the quotient space as usual.

12 / 41 M. Bojańczyk, J. Fijalkow, B. Klin, J. Moerman

Notice that, for a fixed 𝑘, all cogs form a single orbit in Lin
(A
𝑘

)
.

CLAIM 4.6. Every nontrivial equivariant subspace 𝑉 ⊆ Lin
(A
𝑘

)
contains a cog.

PROOF . Pick any nonzero 𝑣 ∈ 𝑉 and pick 𝛼 = {𝑎1, . . . , 𝑎𝑘} ∈
(A
𝑘

)
so that 𝑣(𝛼) ≠ 0. Choose fresh

atoms 𝑏1, . . . , 𝑏𝑘 to form a set as in (3), so that no atom present in 𝑣 lies strictly between 𝑎𝑖 and 𝑏𝑖

for any 𝑖. (This is possible because 𝛼 and 𝑣 are both finite.) We say that an atom 𝑐 is present in 𝑣

if there is a set 𝛽 ∈
(A
𝑘

)
such that 𝑣(𝛽) ≠ 0 and 𝑐 ∈ 𝛽.

For every 𝑖 = 1, . . . , 𝑘, choose an atom automorphism 𝜋𝑖 such that:
𝜋𝑖 (𝑎𝑖) = 𝑏𝑖 ,
𝜋𝑖 (𝑎 𝑗) = 𝑎 𝑗 and 𝜋𝑖 (𝑏 𝑗) = 𝑏 𝑗 for 𝑗 ≠ 𝑖, and
𝜋𝑖 (𝑐) = 𝑐 for all other atoms 𝑐 present in 𝑣.

This is possible thanks to our choice of the 𝑏𝑖 ’s. Then put 𝑣0 = 𝑣 and define 𝑣1, . . . , 𝑣𝑘 ∈ 𝑉 by
induction:

𝑣𝑖 = 𝑣𝑖−1 − 𝜋𝑖 (𝑣𝑖−1)

(note that 𝜋𝑖 (𝑣𝑖−1) ∈ 𝑉 since 𝑉 is equivariant). It is easy to prove by induction on 𝑖 that:(
𝜋𝑖 (𝑣𝑖−1)

)
(𝛼) = 0, hence

𝑣𝑖 (𝛼) = 𝑣(𝛼);

in particular 𝑣𝑘 is nonzero. Also by straightforward induction, each 𝑣𝑖 has the following proper-
ties for every 𝛽 ∈

(A
𝑘

)
:

𝑣𝑖 (𝛽) is nonzero only if for each 1 ≤ 𝑗 ≤ 𝑖, 𝛽 contains either 𝑎 𝑗 or 𝑏 𝑗 but not both,
if 𝛽′ arises from such 𝛽 by replacing 𝑎 𝑗 with 𝑏 𝑗 (or vice versa) for exactly one 𝑗 ≤ 𝑖, while
keeping the other components unchanged, then 𝑣𝑖 (𝛽) + 𝑣𝑖 (𝛽′) = 0.

For 𝑖 = 𝑘 this implies that 𝑣𝑘, divided by the scalar 𝑣(𝛼), is a cog. ■

Claim 4.6 implies that Lin
(A
𝑘

)
has a unique least nontrivial equivariant subspace: the one

spanned by all cogs. We shall now give an explicit description of that subspace.
A vector 𝑣 ∈ Lin

(A
𝑘

)
is called balanced if for every set 𝑆 ∈

(A
𝑘−1

)
, and for every 𝑆-orbit 𝐼 ⊆ A

such that 𝐼 ∩ 𝑆 = ∅: ∑
𝑎∈𝐼 𝑣(𝑆 ∪ {𝑎}) = 0. (4)

The above sum is formally infinite, but only finitely many summands in it are non-zero because 𝑣
is a finite vector. Note that if 𝑆 = {𝑎1, . . . , 𝑎𝑘−1} where 𝑎1 < · · · < 𝑎𝑘−1, then 𝑆-orbits disjoint
from 𝑆 are exactly the 𝑘 open intervals:

(−∞, 𝑎1), (𝑎1, 𝑎2), . . . , (𝑎𝑘−2, 𝑎𝑘−1), (𝑎𝑘−1, +∞). (5)

Balanced vectors form an equivariant subspace of Lin
(A
𝑘

)
: if 𝑣 is balanced then 𝜋(𝑣) is balanced

for every atom automorphism 𝜋, and the sum of two balanced vectors is balanced. We denote

13 / 41 Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata

the space of balanced vectors by 𝐵. An immediate corollary of Claim 4.6 is that every cog is
balanced.

CLAIM 4.7. 𝐵 is the subspace spanned by all cogs.

PROOF . It is enough to show that every balanced vector is a linear combination of cogs. So
consider any nonzero vector 𝑣 ∈ 𝐵. Let 𝛽1 ⊑ 𝛽2 ⊑ . . . ⊑ 𝛽𝑀 ∈

(A
𝑘

)
be the set of all sets that

appear in 𝑣 with nonzero coefficients, ordered lexicographically. More precisely, we define
𝛽 ⊑ 𝛽′ if

min(𝛽) < min(𝛽′), or
min(𝛽) = min(𝛽′) = 𝑎 and 𝛽 \ {𝑎} ⊑ 𝛽′ \ {𝑎}.

Consider
𝛽min = {𝑎1, . . . , 𝑎𝑘},

the least set in 𝑣 in the lexicographic order. Assume 𝑎1 < 𝑎2 < · · · < 𝑎𝑘.
Since 𝑣 is balanced, there must be some 𝑏1 ≠ 𝑎1 with 𝑏1 < 𝑎2 such that the set 𝛽′ =

{𝑏1, 𝑎2, . . . , 𝑎𝑘} has a nonzero coefficient in 𝑣. (Consider 𝑆 = {𝑎2, . . . , 𝑎𝑘} in (4).) This means that
𝛽min ⊑ 𝛽′, and so 𝑎1 < 𝑏1.

Symmetrically, there must be some 𝑏𝑘 ≠ 𝑎𝑘 with 𝑏𝑘 > 𝑎𝑘−1 such that the set 𝛽′ =

{𝑎1, . . . , 𝑎𝑘−1, 𝑏𝑘} has a nonzero coefficient in 𝑣. This means that 𝛽min ⊑ 𝛽′, and so 𝑎𝑘 < 𝑏𝑘.
More generally, for every 1 < 𝑖 < 𝑛 there must be some 𝑏𝑖 ≠ 𝑎𝑖 with 𝑎𝑖−1 < 𝑏𝑖 < 𝑎𝑖+1 such

that the set 𝛽min with 𝑎𝑖 replaced by 𝑏𝑖 has a nonzero coefficient in 𝑣. Because 𝛽min is the least
set in 𝑣 lexicographically, it must hold that 𝑎𝑖 < 𝑏𝑖 .

We obtain the following order of 2𝑘 atoms:

𝑎1 < 𝑏1 < · · · < 𝑎𝑘 < 𝑏𝑘︸ ︷︷ ︸
𝛼

Note that every atom in this set is present in some set that appears in 𝑣with a nonzero coefficient.
Let 𝜈𝛼 be the cog based on 𝛼. Note that for every 𝛽′ with a nonzero coefficient in 𝜈𝛼 we

have 𝛽min ⊑ 𝛽′.
Let 𝜆 ≠ 0 be the coefficient of 𝛽min in 𝑣. Consider the vector

𝑤 = 𝑣 − 𝜆 · 𝜈𝛼.

This has the following crucial properties:
every atom present in 𝑤 is also present already in 𝑣, i.e., no new atoms are introduced
in 𝑤,
for every 𝛽′ with a nonzero coefficient in 𝑤 we have 𝛽min ⊑ 𝛽′,
the coefficient of 𝛽min in 𝑤 is zero, i.e., 𝛽min does not appear in 𝑤.

14 / 41 M. Bojańczyk, J. Fijalkow, B. Klin, J. Moerman

By induction on the (finite) lexicographic order on
(A
𝑘

)
restricted to atoms present in 𝑣,

the vector 𝑤, and therefore also 𝑣, is a linear combination of cogs. This concludes the proof of
Claim 4.7. ■

Claims 4.6 and 4.7 together imply that 𝐵 is the smallest nontrivial equivariant subspace
of Lin

(A
𝑘

)
. To finish the proof of Lemma 4.5, for every 𝑖 ∈ {1, . . . , 𝑘} consider the equivariant

linear map:
𝑔𝑖 : Lin

(A
𝑘

)
→ Lin

(A
𝑘−1

)
defined by:

𝑔𝑖 (𝑣) (𝑆) =
∑

𝑎∈𝐼 𝑣(𝑆 ∪ {𝑎})

for any 𝑆 ∈
(A
𝑘−1

)
, where 𝐼 is the 𝑖’th orbit on the list (5). Tupling these functions for all 𝑖 we

obtain an equivariant linear map:

𝑔 : Lin
(A
𝑘

)
→

(
Lin

(A
𝑘−1

))𝑘
.

By definition, the kernel of 𝑔 is 𝐵, so there is a subspace embedding:(
Lin

(A
𝑘

))
/𝐵 ⊆

(
Lin

(A
𝑘−1

))𝑘
.

Note that 𝐵 does not have any nontrivial equivariant subspaces, so length(𝐵) = 1. By Lemma 4.3(i)
applied to 𝑉 = 𝐵 and 𝑊 = Lin

(A
𝑘

)
we thus obtain:

length
(
Lin

(A
𝑘

))
= 1 + length

((
Lin

(A
𝑘

))
/𝐵

)
≤

≤ 1 + length
((
Lin

(A
𝑘−1

))𝑘)
= 1 + 𝑘 · length

(
Lin

(A
𝑘−1

))
and conclude the proof of Lemma 4.5. ■

The following is now easy:

THEOREM 4.8. The ordered atomsA = (Q, <) have the finite length property. For an equivariant
orbit-finite set 𝑄, the space Lin𝑄 has length at most

(orbit count of 𝑄) · (1 + atom dimension of 𝑄)!

PROOF . If 𝑄 has only one orbit, then there is an equivariant surjective function from
(A
𝑘

)
to 𝑄,

where 𝑘 is the atom dimension of 𝑄 (see [5, Lem. 3.20]). By induction on 𝑘, using Lemma 4.5, we
obtain

length
(
Lin

(A
𝑘

))
≤ (1 + 𝑘)! (6)

The theorem then follows by Lemma 4.3(iii). Finally, the case of multi-orbit 𝑄 follows from
Lemma 4.3(ii). ■

15 / 41 Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata

From this it is easy to deduce the finite length property for equality atoms.

COROLLARY 4.9. The equality atoms A = (N,=) have the finite length property. For an
equivariant orbit-finite set 𝑄, the space Lin𝑄 has length at most

(orbit count of 𝑄) · 𝑘! · (1 + 𝑘)!

where 𝑘 is the atom dimension of 𝑄.

PROOF . Extend A with any total order isomorphic to that of the rational numbers. Any set 𝑉 ,
equivariant over equality atoms, remains equivariant when considered as a set over ordered
atoms along this order. In particular, if 𝑉 is a vector space, any chain of subspaces

𝑉1 ⊊ 𝑉2 ⊊ · · · ⊊ 𝑉

equivariant over equality atoms, remains a chain over ordered atoms. As a result, the length
of 𝑉 over equality atoms does not exceed the length of 𝑉 over ordered atoms.

The set A(𝑘) , a single-orbit set over equality atoms, when seen as an equivariant set over
ordered atoms, has exactly 𝑘! disjoint orbits. Each of these orbits is equivariantly (over ordered
atoms) isomorphic to

(A
𝑘

)
. Theorem 4.8 then implies that Lin

(
A(𝑘)) , over equality atoms, has

length at most 𝑘! · (1 + 𝑘)!.
Every single-orbit equivariant set 𝑄 is an image of an equivariant surjective function

from A(𝑘) , where 𝑘 is the atom dimension of 𝑄; the lemma follows by Lemma 4.3(iii). The case
of multi-orbit 𝑄 follows from Lemma 4.3(ii). ■

4.2 Length of finitely supported chains

So far, we have bounded the length of chains of equivariant subspaces. This will be enough
to prove Theorem 3.5 for equivariant automata in Section 5. However, for generalising that
theorem to finitely supported automata a finite bound on the length of chains of finitely sup-
ported spaces is needed. Here it is important that the chains are uniformly supported, i.e., all
subspaces in a chain are required to have the same support. (Uniformly supported chains have
been considered before in nominal domain theory [21].)

It is natural to conjecture that the finite length property (Definition 4.1) implies a finite
bound on the length of such chains, at least for the atom structures that guarantee the existence
of least supports (see [6, Section 9]). However, we are only able to prove it for the equality and
ordered atoms.

THEOREM 4.10. Consider the equality or ordered atoms. Let 𝑎 be a tuple of atoms. For every
𝑎-supported orbit-finite set 𝑄, there is a finite upper bound on the length of chains of 𝑎-supported
subspaces of Lin𝑄.

16 / 41 M. Bojańczyk, J. Fijalkow, B. Klin, J. Moerman

PROOF . Define the 𝑎-length of a vector space to be the maximal length of an 𝑎-supported
chain of subspaces. In the special case when 𝑎 is the empty tuple, we get the notion of length
from Definition 4.1. Every 𝑎-supported orbit-finite set of atom dimension 𝑘 can be obtained,
using images under 𝑎-supported functions and disjoint unions, from 𝑎-orbits contained in A𝑘.
Since Lemma 4.3 holds, with the same proof, for 𝑎-length, it is enough to show that the 𝑎-length
is finite for Lin𝑄 when 𝑄 is a single 𝑎-orbit contained in A𝑘. We now split into two proofs,
depending on whether we deal with the equality or ordered atoms.

Equality atoms. Choose some bijection

𝑓 : (A − 𝑎)︸ ︷︷ ︸
atoms that do

not appear in 𝑎

→ A,

which is possible since both sets are countably infinite. (Note that 𝑓 cannot be finitely
supported.) Let ℓ ∈ {1, . . . , 𝑘} be the number of coordinates that are not from 𝑎 in some
(equivalently, every) tuple from the 𝑎-orbit 𝑄. We can lift 𝑓 to an injective function (in fact,
a bijection)

𝑔 : 𝑄 → A(ℓ) ,

which erases the coordinates that use atoms from 𝑎 and applies 𝑓 to the remaining coordi-
nates. One can easily see that

Lin 𝑔 : Lin𝑄 → LinA(ℓ)

maps 𝑎-supported subspaces of Lin𝑄 to equivariant subspaces of LinA(ℓ) , and preserves
strict inclusions. Therefore the 𝑎-length of Lin𝑄 is at most the (equivariant) length of
LinA(ℓ) , and the latter length is finite by Corollary 4.9.
Ordered atoms. Let the atoms in 𝑎 be

𝑎1 < · · · < 𝑎𝑛.

For every 𝑖 ∈ {0, 1, . . . , 𝑛}, consider the interval

A𝑖 = {𝑎 : 𝑎𝑖 < 𝑎 < 𝑎𝑖+1},

where 𝑎0 is −∞ and 𝑎𝑛+1 is ∞. Choose some order-preserving bijections

𝑓𝑖 : A𝑖 → A.

As in the previous item, let ℓ be the coordinates from 𝑄 which avoid atoms from 𝑎. By
erasing the coordinates which use atoms from 𝑎, and applying the appropriate functions 𝑓𝑖

to the remaining coordinates, we get an injective function

𝑔 : 𝑄 → Aℓ.

17 / 41 Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata

Since the functions 𝑓𝑖 all have the same co-domain, namely A, the image of the function
will contain tuples that are not necessarily strictly increasing. Nevertheless, the linear
lifting

𝑔 : Lin𝑄 → LinAℓ

maps 𝑎-supported subspaces in Lin𝑄 to equivariant subspaces in LinAℓ, and hence by
Theorem 4.8 we obtain a finite bound on 𝑎-supported chains in Lin𝑄.

■

4.3 A lower bound on length

Theorem 4.8 and Corollary 4.9 give upper bounds on the length of chains of equivariant vector
spaces. We will now show a lower bound which is not quite matching, but exponential in the
atom dimension.

We will focus on the equality atoms, where the case of interest is Lin(A(𝑘)) for a number 𝑘.
For 𝛼 ∈ A(𝑘) and 𝐼 ⊆ {1, . . . , 𝑘}, let 𝛼|𝐼 denote the tuple 𝛼 restricted to the coordinates

from 𝐼 , and define 𝐵𝐼 (𝛼) ⊆ A(𝑘) to be the set of those tuples 𝛽 for which 𝛽 |𝐼 = 𝛼|𝐼 .
Given 𝐼 , define the space 𝑉𝐼 ⊆ Lin(A(𝑘)) as the set of all vectors 𝑣 such that, for every

𝛼 ∈ A(𝑘): ∑︁
𝛽∈𝐵𝐼 (𝛼)

𝑣(𝛽) = 0.

For example, for 𝐼 = ∅ the space 𝑉𝐼 is the space of those vectors where all coefficients add up
to 0. For 𝐼 = {1, . . . , 𝑛} we have 𝐵𝐼 (𝛼) = {𝛼} and the space 𝑉𝐼 is trivial.

If 𝐼 ⊆ 𝐽 ⊆ {1, . . . , 𝑛} then each set 𝐵𝐼 (𝛼) is a disjoint union of sets of the form 𝐵𝐽 (𝛽) for
some tuples 𝛽. As a result, 𝑉𝐽 ⊆ 𝑉𝐼 . Our main observation is a kind of converse to this:

LEMMA 4.11. For every 𝐼, 𝐽1, . . . , 𝐽𝑚 ⊆ {1, . . . , 𝑘}, if 𝐼 ⊈ 𝐽𝑖 for every 𝑖 = 1, . . . , 𝑚 then:

𝑉𝐽1 ∩ · · · ∩𝑉𝐽𝑚 ⊈ 𝑉𝐼 .

PROOF . Assume sets 𝐼 and 𝐽1, . . . , 𝐽𝑚 as above. Fix some pairwise distinct atoms 𝑐𝑖 for 𝑖 ∉ 𝐼

and 𝑎𝑖 , 𝑏𝑖 for 𝑖 ∈ 𝐼 . For every subset 𝐻 ⊆ 𝐼 , define the tuple 𝛼𝐻 = (𝑑1, . . . , 𝑑𝑘) ∈ A(𝑘) by:

𝑑𝑖 =

𝑎𝑖 if 𝑖 ∈ 𝐻

𝑏𝑖 if 𝑖 ∈ 𝐼 \ 𝐻
𝑐𝑖 if 𝑖 ∉ 𝐼 .

Define the vector:
𝑣 =

∑︁
𝐻⊆𝐼

(−1) |𝐻 | · 𝛼𝐻 .

Then 𝑣 ∈ 𝑉𝐽𝑖 for each 𝑖 = 1, . . . , 𝑚, but 𝑣 ∉ 𝑉𝐼 . ■

18 / 41 M. Bojańczyk, J. Fijalkow, B. Klin, J. Moerman

COROLLARY 4.12. The space Lin(A(𝑘)) admits a chain of equivariant subspaces of length 2𝑘.

PROOF . Consider any enumeration of all subsets of {1, . . . , 𝑘}:

𝐽1, 𝐽2, . . . , 𝐽2𝑘

such that 𝐽𝑖 ⊈ 𝐽 𝑗 for all 𝑖 > 𝑗. This is easy to achieve: order the subsets by their size (increasingly),
and subsets of equal size can be enumerated in any order. Then define spaces:

𝑊𝑖 =
⋂
𝑗≤𝑖

𝑉𝐽 𝑗 .

Obviously 𝑊1 ⊇ 𝑊2 ⊇ · · · ⊇ 𝑊2𝑘 , and by Lemma 4.11 all the inclusions are strict. ■

4.4 Failure of finite length: vector atoms

In this section we consider, as the structure of atoms, the countable infinite-dimensional vector
space over Z2. We will show that these atoms do not have the finite length property. This is a
rather confusing case in the context of this paper: in general we study vectors built of atoms,
and now we wish atoms themselves to be vectors. We will therefore present the structure and
its basic properties step by step.

Let D = {𝑎, 𝑏, 𝑐, 𝑑, . . .} be a countably infinite set of generators. We consider, as the set of
atoms,

A = Lin(D),

the free vector space, over the field Z2, generated by D. Vectors in this space (i.e., our atoms)
are formal combinations of generators; because we work over Z2, these formal combinations
are simply finite sets of generators, with addition defined by symmetric difference. We will
represent atoms simply by listing the generators in them, with the zero vector denoted by 0:

0, 𝑎, 𝑏, 𝑐, . . . , 𝑎𝑏, 𝑎𝑐, . . . , 𝑏𝑐𝑒, . . .

and their addition will be denoted by ⊕, so that e.g.:

𝑎𝑏𝑐 ⊕ 𝑏𝑐𝑑 = 𝑎𝑑.

To distinguish atoms from generators we will, in this section only, denote them by 𝑢, 𝑣, 𝑤 etc.
The space A can be seen as a relational structure in a standard way, with one constant

0 ∈ A and one ternary relation

𝑅(𝑢, 𝑣, 𝑤) ⇔ 𝑢 ⊕ 𝑣 = 𝑤.

The automorphisms of this structure are exactly linear automorphisms of A seen as a vector
space. It is a standard result that the structure A is oligomorphic.

For 𝑣 ∈ A and 𝑋 ⊆ A, we write as usual: 𝑣 ⊕ 𝑋 = {𝑣 ⊕ 𝑤 | 𝑤 ∈ 𝑋}.

19 / 41 Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata

We will consider finite-dimensional subspaces ofA. For a number 𝑛 > 0, an 𝑛-dimensional
subspace of A has exactly 2𝑛 elements. One way to construct such a subspace is to take the
subspace spanned by some chosen 𝑛 generators from D. For example,

{0, 𝑎, 𝑏, 𝑐, 𝑎𝑏, 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐}

is a 3-dimensional subspace spanned by 𝑎, 𝑏 and 𝑐. Other subspaces exist; for example,

{0, 𝑎𝑏, 𝑎𝑐, 𝑏𝑐}

is a 2-dimensional subspace.
For subsets 𝑋,𝑌 ⊆ A, we denote their symmetric difference (as sets) by 𝑋 ÷ 𝑌 .

LEMMA 4.13. For all 𝑣 ∈ A and 𝑋,𝑌 , 𝑍 ⊆ A:
(i) 𝑋 ∩ (𝑌 ÷ 𝑍) = (𝑋 ∩ 𝑌) ÷ (𝑋 ∩ 𝑍),

(ii) 𝑣 ⊕ (𝑋 ∩ 𝑌) = (𝑣 ⊕ 𝑋) ∩ (𝑣 ⊕ 𝑌),
(iii) 𝑣 ⊕ (𝑋 ÷ 𝑌) = (𝑣 ⊕ 𝑋) ÷ (𝑣 ⊕ 𝑌).

PROOF . Routine exercise. ■

We will be interested in symmetric differences of finite families of vector spaces of the
same finite dimension.

LEMMA 4.14. For numbers 𝑛 > 𝑚 > 0, let 𝑉 ⊆ A be an 𝑛-dimensional vector space and let
𝑉1, 𝑉2, . . . , 𝑉𝑘 be all its 𝑚-dimensional subspaces. Then

𝑉1 ÷𝑉2 ÷ · · · ÷𝑉𝑘 = 𝑉. (7)

PROOF . It is a standard exercise to show that

𝑘 =
(2𝑛 − 1) (2𝑛 − 2) · · · (2𝑛 − 2𝑚−1)
(2𝑚 − 1) (2𝑚 − 2) · · · (2𝑚 − 2𝑚−1) .

Both the numerator and the denominator of this fraction are divisible by the same power of 2;
specifically it is 𝑚(𝑚−1)

2 . As a result, 𝑘 is an odd number.
For any vector 𝑣 ∈ 𝑉 , let 𝛼(𝑣) be the number of subspaces 𝑉𝑖 that contain 𝑣. Note that, due

to the symmetry under automorphisms of 𝑉 , for all non-zero 𝑣, 𝑤 ∈ 𝑉 there is 𝛼(𝑣) = 𝛼(𝑤);
denote this number by 𝛼.

Now calculate:

𝑘 · 2𝑚 =

𝑘∑︁
𝑖=1

|𝑉𝑖 | =
∑︁
𝑣∈𝑉

𝛼(𝑣) = 𝑘 +
∑︁

𝑣∈𝑉\{0}
𝛼(𝑣) = 𝑘 + (2𝑛 − 1) · 𝛼.

The number on the left is even and 𝑘 is odd, so 𝛼 must be odd.
As a result, every vector in𝑉 belongs to an odd number of subspaces𝑉𝑖 , which yields (7). ■

20 / 41 M. Bojańczyk, J. Fijalkow, B. Klin, J. Moerman

The following basic property of finite-dimensional spaces over Z2 will be important for
our purposes.

LEMMA 4.15. For every finite family 𝐴1, 𝐴2, . . . , 𝐴𝑘 of 𝑛-dimensional vector subspaces of A, the
symmetric difference 𝐴1 ÷ 𝐴2 ÷ · · · ÷ 𝐴𝑘 is either empty or has size at least 2𝑛.

PROOF . See Appendix B. ■

To see that Lemma 4.15 is not entirely obvious, let us have a look at some examples. First
of all, the symmetric difference from the lemma may be empty even if all 𝐴𝑖 are distinct. For an
example, consider 𝑛 = 2, 𝑘 = 4 and vector subspaces:

𝑉1 = {0, 𝑎, 𝑏, 𝑎𝑏} 𝑉2 = {0, 𝑏, 𝑐, 𝑏𝑐}
𝑉3 = {0, 𝑎, 𝑐, 𝑎𝑐} 𝑉4 = {0, 𝑎𝑏, 𝑏𝑐, 𝑎𝑐}.

The symmetric difference may also be of size strictly between 2𝑛 and 2𝑛+1, so in particular
it may not be a vector subspace. For an example, consider 𝑛 = 3, 𝑘 = 2 and vector subspaces:

𝑉1 = {0, 𝑎, 𝑏, 𝑐, 𝑎𝑏, 𝑏𝑐, 𝑎𝑐, 𝑎𝑏𝑐}
𝑉2 = {0, 𝑎, 𝑑, 𝑒, 𝑎𝑑, 𝑑𝑒, 𝑎𝑒, 𝑎𝑑𝑒};

here |𝑉1 ÷𝑉2 | = 12. Another example, for 𝑛 = 2 and 𝑘 = 3, is:

𝑉1 = {0, 𝑎, 𝑏, 𝑎𝑏} 𝑉2 = {0, 𝑏, 𝑐, 𝑏𝑐} 𝑉3 = {0, 𝑐, 𝑑, 𝑐𝑑};

here |𝑉1 ÷𝑉2 ÷𝑉3 | = 6. If we additionally consider

𝑉4 = {0, 𝑎𝑏, 𝑏𝑐, 𝑎𝑐},

the symmetric difference becomes {𝑎, 𝑑, 𝑎𝑐, 𝑐𝑑}, showing that the symmetric difference may
not be a vector subspace even if its size is 2𝑛.

So far in this section we studied properties of the vector atoms, but have not considered
vector spaces over those atoms yet. In fact we will need to consider only one such vector space
and its equivariant subspaces: LinA, the free vector space generated by the set of atoms, over
the field Z2. Vectors in LinA are formal linear combinations of atoms, such as:

0 + 𝑎 + 𝑏 + 𝑎𝑏 or 𝑎 + 𝑏𝑐 + 𝑎𝑐 + 𝑏𝑑𝑒. (8)

The addition symbol above is used to build formal combinations of atoms, and it should not be
confused with ⊕, which is an operation to build atoms from other atoms. Thanks to the choice
of the field, combinations as above can be seen simply as finite sets of atoms, with symmetric
difference ÷ as addition.

The main result of this section is that LinA has infinite length, so the vector atoms A does
not have the finite length property.

21 / 41 Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata

THEOREM 4.16. LinA has an infinite chain of equivariant subspaces.

PROOF . For any number 𝑛, let𝑊𝑛 ⊆ LinA be the subspace spanned by those vectors in LinA
that, considered as subsets of A, are 𝑛-dimensional vector subspaces of A. (For example, in (8)
the first vector is a subspace of A, the second one is not.) It is easy to see that each space𝑊𝑛 is
equivariant.

For any 𝑛 > 𝑚, the inclusion𝑊𝑛 ⊆ 𝑊𝑚 follows from Lemma 4.14. Moreover, this inclusion
is strict by Lemma 4.15. Indeed, every nonzero vector in𝑊𝑛 has at least 2𝑛 elements, and𝑊𝑚

contains vectors of smaller size.
As a result, there is an infinite chain of subspaces:

· · · ⊊𝑊3 ⊊𝑊2 ⊊𝑊1 ⊊ LinA.

■

Note that the above infinite chain of subspaces is decreasing. We conjecture that for
all oligomorphic atom structures A, all spaces LinA𝑘 are noetherian, i.e. they do not admit
increasing infinite chains of equivariant subspaces.

5. The equivalence algorithm

In this section, we use results from Section 4 to complete the proof of Theorem 3.5. We assume
that the atoms A are the equality or ordered atoms.

LEMMA 5.1. Let A1 and A2 be equivariant weighted orbit-finite automata, and let 𝑛 be their
orbit count and 𝑘 the atom dimension as in Theorem 3.5. If the recognized weighted languages
are different, then this difference is witnessed by some input word of length at most

2poly(𝑘) · 𝑛.

PROOF . Let 𝑄 be the state space of the difference automaton A1 − A2 as described in the
reduction from equivalence to zeroness. For an input word 𝑤 ∈ Σ∗, let [𝑤] ∈ Lin𝑄 be its
corresponding configuration in the difference automaton, and let𝑉𝑖 ⊆ Lin𝑄 be the subspace that
is spanned by configurations of input words of length at most 𝑖. By Theorem 4.8/Corollary 4.9, we
know that the chain {𝑉𝑖}𝑖 must stabilize in a number of steps that is bounded as in the statement
of the lemma. This means that for every input word, its configuration is a linear combination of
configurations of short words; in particular the difference automaton can produce a nonzero
output if and only if it can produce a nonzero output on a short input word. ■

At this point, we could solve the equivalence problem by guessing a short differentiating
word, leading to a nondeterministic algorithm for non-equivalence, with running time as in the
bound from Lemma 5.1. We can, however, improve this to get a deterministic algorithm, by

22 / 41 M. Bojańczyk, J. Fijalkow, B. Klin, J. Moerman

using a reduction to the equivalence problem for finite weighted automata. Short input words
necessarily use few atoms, and therefore the equivalence problem boils down to checking
equivalence for input words that have few atoms. The latter problem is solved in the following
lemma.

LEMMA 5.2. Consider the following problem.
Input. Two equivariant weighted orbit-finite automata A1 and A2 and a number ℓ ∈
{1, 2, . . .};
Question. Are the two automata equivalent on all input words supported by at most ℓ atoms?

This problem can be solved in time polynomial in 𝑛 · ℓ𝑘, where the parameters 𝑛 and 𝑘 are defined
as in Theorem 3.5.

PROOF . Choose a tuple 𝑎 of ℓ atoms. Since the automata are equivariant, they are equivalent
on inputs with at most ℓ atoms if and only if they are equivalent on inputs words supported
by 𝑎.

By equivariance and condition (*) from Definition 3.1, if a state 𝑞 and an input letter 𝜎 are
both supported by 𝑎, then the same is true for every state 𝑝 such that (𝑞, 𝜎, 𝑝) is a transition
with nonzero weight. Therefore, when restricted to input words that are supported by 𝑎, both
automata only use states that are supported by 𝑎. These observations motivate the following
definition: for 𝑖 ∈ {1, 2}, let A𝑖,𝑎 the weighted automaton that is obtained from A𝑖 by restricting
the states and alphabet to elements supported by 𝑎, and restricting the transitions and weight
functions to the new alphabet and states. This automaton is finite, with size bounded by 𝑛 · ℓ𝑘.
The lemma follows by applying the polynomial time algorithm for equivalence of finite weighted
automata. ■

The above two lemmas complete the proof of Theorem 3.5. The algorithm for zeroness is
simply the algorithm from Lemma 5.2, with ℓ being the bound from Lemma 5.1.

Notice how our algorithm does not rely on an explicit computation of the chain of sub-
spaces {𝑉𝑖}𝑖 from the proof of Lemma 5.1. Doing so would require a method for calculating (a
representation of) 𝑉𝑖+1 from (a representation of) 𝑉𝑖 , and a method of checking whether two
subspaces of Lin𝑄 are equal, to detect stabilisation. Variants of the latter problem, under the
guise of solving orbit-finite systems of linear equations, are studied in [10].

6. Vector spaceswith atoms

In this section, we study in more depth vector spaces that are spanned by orbit-finite sets. Apart
from their independent interest, these results will be used in Section 7 to minimize weighted
automata, and in Section 8 to decide equivalence for unambiguous automata.

23 / 41 Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata

Vector spaces of the form Lin𝑄, where 𝑄 is an orbit-finite set, could be called orbit-finite-
dimensional, since they have an orbit-finite basis. These spaces are general enough to treat
weighted orbit-finite automata. Some other spaces admit orbit-finite bases too; in [10, Thm. 3.3],
this is shown for a variant of Lin𝑄 where vectors are infinite (but finitely supported) linear
combinations, rather than finite ones. Nevertheless, vector spaces with orbit-finite bases are not
very robust. The reason is that extracting a basis uses choice, see [3, Thm. 1], and the principle
of choice fails for sets with atoms.

EXAMPLE 6.1. Recall the vector space LinA that was discussed in Example 4.2, and the
subspace 𝑉 that was spanned by

𝑋 = {𝑎 − 𝑏 : 𝑎 ≠ 𝑏 ∈ A}.

The set 𝑋 is not a basis, since the vectors 𝑎 − 𝑏 and 𝑏 − 𝑎 (or 𝑎 − 𝑏, 𝑏 − 𝑐 and 𝑎 − 𝑐) are linearly
dependent. However, 𝑋 is a single equivariant orbit, so it does not have any nonempty proper
subset that is equivariant. Therefore, no equivariant subset of 𝑋 is a basis. In fact, 𝑉 does not
have any equivariant basis, even if we allow bases that are not contained in 𝑋 . It does have,
however, a finitely supported basis contained in 𝑋 : for any fixed atom 𝑎0 ∈ A, the set

{𝑎0 − 𝑏 : 𝑏 ∈ A − {𝑎0}}

is a basis. ■

In the previous example, there was no equivariant basis, but there was a finitely supported
one. In the next example there is no finitely supported basis at all.

EXAMPLE 6.2. Consider the equality atoms and the space Lin(A(2)) over the field of rationals.
A vector in this space can be visualized as a weighted directed finite graph, where vertices are
atoms and the weight of an edge (𝑎, 𝑏) is the corresponding coefficient in the vector. Consider
the subspace of Lin(A(2)) spanned by

𝑋 = {(𝑎, 𝑏) − (𝑏, 𝑎) : 𝑎 ≠ 𝑏 ∈ A}.

This subspace consists of graphs where for every pair of vertices, the connecting edges in both
directions have opposite weights. We claim that there is no finitely supported subset of 𝑋 that
is a basis of this space. Indeed, suppose that 𝑌 ⊆ 𝑋 is a finitely supported basis. It is easy to see
that for every two distinct atoms 𝑎, 𝑏, the set 𝑌 must contain one of the vectors

(𝑎, 𝑏) − (𝑏, 𝑎) or (𝑏, 𝑎) − (𝑎, 𝑏).

If the atoms 𝑎, 𝑏 are fresh (i.e. they do not belong to the least support of 𝑌), by swapping these
two atoms we map one of the vectors to the other, hence both vectors must belong to𝑌 . However,
the two vectors are linearly dependent and so 𝑌 is not a basis.

24 / 41 M. Bojańczyk, J. Fijalkow, B. Klin, J. Moerman

Using a similar argument one can show that the subspace spanned by 𝑋 does not have
any finitely supported basis, even if we allow bases that are not contained in 𝑋 . ■

The above example shows that vector spaces with an orbit-finite basis are not closed
under finitely supported subspaces. The same issue appears with finitely supported quotients
(images of surjective linear maps). Indeed, the spaces from Examples 6.1 and 6.2 are images
of equivariant linear maps from Lin(A(2)) to, respectively, Lin(A) and Lin(A(2)). These issues
will become a problem in the next section, where we minimize weighted orbit-finite automata,
since minimization will require taking subspaces and quotients. To deal with these issues, we
notice that all spaces that we have considered so far, even if they lack an orbit-finite basis, have
orbit-finite spanning sets. They are therefore instances of the following general notion:

DEF IN IT ION 6.3 (Orbit-finitely spanned vector space). Fix a field F and an atom structure.
A vector space with atoms is a vector space such that the underlying set 𝑉 is a set with atoms,
and the operations

+ : 𝑉 ×𝑉 → 𝑉︸ ︷︷ ︸
binary addition

· : F ×𝑉 → 𝑉︸ ︷︷ ︸
scalar multiplication

are finitely supported. A vector space with atoms is called orbit-finitely spanned if there is an
orbit-finite subset of the vector space which spans it.

As we have seen in Example 6.2, some orbit-finitely spanned vector spaces do not have
any orbit-finite basis. They do, however, have finite length:

LEMMA 6.4. For atoms with the finite length property, equivariant orbit-finitely spanned vector
spaces have finite length.

PROOF . Let 𝑉 be spanned by an equivariant orbit-finite set 𝑄, and let

𝑓 : Lin𝑄 → 𝑉

be the unique linear map which extends the inclusion of 𝑄 in 𝑉 . This is a surjective finitely
supported linear map, so (by Lemma 4.3(iii)) the length of 𝑉 is not greater than the length of
Lin𝑄, which is finite by the finite length property. ■

THEOREM 6.5 (Closure properties). If the atoms have the finite length property, then equiv-
ariant orbit-finitely spanned vector spaces are closed under equivariant quotients, equivariant
subspaces, direct sums and tensor products.

PROOF . Quotients and direct sums are immediate. For the tensor product 𝑈 ⊗ 𝑉 , suppose𝑈
and𝑉 are spanned by orbit-finite sets 𝑄 and 𝑃. Since Lin𝑄 ⊗ Lin 𝑃 is isomorphic to Lin(𝑄 × 𝑃), it
follows that 𝑈 ⊗ 𝑉 is spanned by 𝑄 × 𝑃, which is orbit-finite.

25 / 41 Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata

We are left with the subspaces. Suppose that 𝑉 is equivariant and orbit-finitely spanned,
and let 𝑈 be an equivariant subspace of 𝑉 . Construct an increasing chain of equivariant
subspaces of 𝑈

𝑈0 ⊆ 𝑈1 ⊆ 𝑈2 ⊆ · · · ⊆ 𝑈

as follows:
𝑈0 is the trivial space,
if 𝑈𝑛 ≠ 𝑈 then pick any vector 𝑢𝑛+1 ∈ 𝑈 \𝑈𝑛, and let 𝑈𝑛+1 be the subspace of 𝑈 spanned by
all vectors in 𝑈𝑛 and all vectors in the orbit of 𝑢𝑛+1.

Each 𝑈𝑛 is an equivariant subspace of the orbit-finitely-spanned 𝑉 , so by Lemma 6.4 the chain
cannot grow forever, hence 𝑈 = 𝑈𝑛 for some 𝑛. Of course, 𝑈𝑛 is spanned by all vectors in the
orbits of 𝑢1, . . . , 𝑢𝑛. ■

Thanks to Theorem 4.10, in the equality and ordered atoms, Lemma 6.4 and Theorem 6.5
hold also for orbit-finitely spanned vector spaces that are not necessarily equivariant.

In the remainder of this section, we discuss another closure property of orbit-finitely
spanned vector spaces: if𝑉 is an equivariant orbit-finitely spanned vector space, then the same
is true for its finitely supported dual, which is the vector space of finitely supported linear maps
from 𝑉 to F. We will prove closure under finitely supported duals for the equality and ordered
atoms.

Before considering finitely supported duals, we discuss a slightly simpler vector space.
For 𝑄 an orbit-finite set, define

𝑄
fs→ F

to be the set of finitely supported functions from 𝑄 to the field F. This set can be viewed as a
vector space, with coordinate-wise addition and scalar multiplication. We have

Lin𝑄 ⊆ 𝑄
fs→ F,

and the inclusion is strict when 𝑄 is infinite, as witnessed by the function that returns 1 on all
arguments.

EXAMPLE 6.6. For the equality atoms, the space A
fs→ F is spanned by the functions

{ 𝑓A} ∪ { 𝑓𝑎 : 𝑎 ∈ A} (9)

26 / 41 M. Bojańczyk, J. Fijalkow, B. Klin, J. Moerman

where 𝑓A maps all atoms to 1, while 𝑓𝑎 maps 𝑎 to 1 and the remaining atoms to 0. Indeed, every
function 𝑓 : A→ F supported by an atom tuple 𝑎 can be presented as:

𝑓 = 𝑓 (𝑐)︸︷︷︸
𝑐 is some fresh
atom not in 𝑎

· 𝑓A +
∑︁
𝑎∈𝑎

(𝑓 (𝑎) − 𝑓 (𝑐)) · 𝑓𝑎.

The functions from (9) are linearly independent, hence they form an orbit-finite basis of A
fs→ F.

A similar result holds for the ordered atoms, except that there the spanning set is

{ 𝑓A} ∪ { 𝑓𝑎 : 𝑎 ∈ A} ∪ { 𝑓>𝑎 : 𝑎 ∈ A}

where 𝑓A and 𝑓𝑎 are as before and 𝑓>𝑎 maps 𝑏 to 1 precisely if 𝑏 > 𝑎. ■

The above example shows that A
fs→ F is orbit-finitely spanned. This is true for every

orbit-finite set, not just A:

THEOREM 6.7. Assume the equality or the ordered atoms. If 𝑄 is an orbit-finite set, then 𝑄
fs→ F

is orbit-finitely spanned.

PROOF . To simplify notation, we assume that 𝑄 is equivariant. By Theorem 6.5 this implies
the general case anyway, because every orbit-finite set 𝑄 is contained in some equivariant
orbit-finite set �̄�, hence 𝑄

fs→ F is a subspace of �̄�
fs→ F. Furthermore, for the same reasons, it is

safe to assume that 𝑄 is a single-orbit set.
We need to exhibit an orbit-finite set Φ of finitely supported functions, so that every finitely

supported function 𝑓 : 𝑄 → F is a linear combination of functions from Φ. It is enough to
show this for the case where 𝑓 is the characteristic function of a finitely supported set 𝑅 ⊆ 𝑄,
since such characteristic functions are easily seen to span the space of all finitely supported
functions. So consider such a set 𝑅, supported by some tuple 𝑎 of atoms. 𝑅 is then a disjoint
union of 𝑎-orbits, and it is enough to consider the case where 𝑅 is a single 𝑎-orbit.

From here, the arguments for the equality and the ordered atoms begin to differ.
For the case of ordered atoms, we know that the single-orbit 𝑄 is in equivariant bijection

with
(A
𝑘

)
for some number 𝑘, so it is enough to deal with 𝑄 =

(A
𝑘

)
. Let 𝑅 be the 𝑎-orbit of some

𝑟 = {𝑎1, . . . , 𝑎𝑘} ∈
(A
𝑘

)
.

Each 𝑎𝑖 belongs to some 𝑎-orbit of atoms. This orbit is an interval, so it is equal to the orbit
determined by at most two atoms from 𝑎. (One atom is enough if 𝑎𝑖 belongs to 𝑎, or if it is larger
than (or smaller than) every atom in 𝑎.) Picking these atoms for each 𝑖 = {1, . . . , 𝑘}, we obtain a
tuple 𝑏 ⊆ 𝑎 of at most 2𝑘 atoms, such that 𝑅 is equal to the 𝑏-orbit of 𝑟. As a consequence, 𝑅 is
supported by 𝑏.

As a result, we may take Φ to be the set of characteristic functions of subsets of 𝑄 supported
by at most 2𝑘 atoms. Since 𝑘 is fixed for a given 𝑄, this is an orbit-finite set.

27 / 41 Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata

The argument for the equality atoms is only a little more complicated. Here for Φ we take
the set of characteristic functions of subsets of 𝑄 supported by at most 𝑘 atoms.

We know that for some number 𝑘 there is an equivariant surjection from A(𝑘) to 𝑄 , so it is
enough to deal with 𝑄 = A(𝑘) . Let 𝑅 be the 𝑎-orbit of some

𝑟 = (𝑎1, . . . , 𝑎𝑘) ∈ A(𝑘) .

We proceed by induction on the number of atoms in 𝑟 that are not in 𝑎. If this number is zero,
then 𝑅 is the singleton of 𝑟 and the characteristic function of 𝑅 is in Φ, so there is nothing to
do. If there are some atoms in 𝑟 that are not present in 𝑎, denote by 𝐼 ⊆ {1, . . . , 𝑘} the set of
coordinates where these atoms occur in 𝑟. Then an 𝑠 ∈ A(𝑘) belongs to 𝑅 if and only if:

(i) 𝑠 is equal to 𝑟 on all coordinates apart from those in 𝐼 ,
(ii) atoms in 𝑠 on coordinates from 𝐼 do not belong to 𝑎.

Let �̂� ⊆ 𝑄 be the set of tuples 𝑠 that satisfy condition (i) above; obviously 𝑅 ⊆ �̂�. Moreover, �̂�
has a support of size 𝑘 − |𝐼 |, so 𝜒�̂�, the characteristic function of �̂�, belongs to Φ.

Let {𝑟1, . . . , 𝑟𝑛} be the set of all 𝑘-tuples in A(𝑘) that can be obtained from 𝑟 by replacing
some (not necessarily all, but at least one) atoms on coordinates from 𝐼 by some atoms from 𝑎.
Let 𝑅𝑖 be the 𝑎-orbit of 𝑟𝑖 , for each 𝑖. The sets 𝑅𝑖 are pairwise disjoint, and their union is equal
to the difference �̂� \ 𝑅, therefore there is a linear equation:

𝜒𝑅 = 𝜒�̂� −
𝑛∑︁
𝑖=1

𝜒𝑅𝑖
.

By the inductive assumption, each 𝜒𝑅𝑖
is a linear combination of functions from Φ, which

completes the proof. ■

COROLLARY 6.8. Assume the equality or ordered atoms. If𝑉 is an orbit-finitely spanned vector
space, then the same is true for its finitely supported dual.

PROOF . Recall that the finitely supported dual of 𝑉 is the vector space of linear maps from 𝑉

to F. If 𝑉 is spanned by an orbit-finite set 𝑄, then its finitely supported dual embeds into the
space 𝑄

fs→ F by precomposing with the inclusion of 𝑄 in 𝑉 ; the latter space is orbit-finitely
spanned by Theorem 6.7. The corollary follows since, by Theorem 6.5, orbit-finitely spanned
vector spaces are closed under subspaces. ■

In contrast to the finite-dimensional case, orbit-finitely spanned vector spaces are not iso-
morphic to their finitely supported duals. Indeed, Example 6.6 shows that the finitely supported
dual of LinA is equivariantly isomorphic to the space Lin(1+A). There is no linear isomorphism
between them which is equivariant, or even finitely supported.

The following example shows that the restriction to equality or ordered atoms was impor-
tant in Theorem 6.7. This example hints on the difficulties one may encounter when generalizing
our theory to, say, arbitrary oligomorphic atom structures.

28 / 41 M. Bojańczyk, J. Fijalkow, B. Klin, J. Moerman

EXAMPLE 6.9. Consider the graph atoms [5, Section 7.3.1], i.e. the case when the atom struc-
ture A is the Rado graph. This is an undirected graph with the key property that for all finite
sets𝑈 ⊆ 𝑆 ⊆ A there is an atom 𝑎 ∈ A that has an edge to every atom in𝑈 and does not have an
edge to any atom in 𝑆 \𝑈 .

We will show that the vector space A
fs→ F, for F = Z2, does not have an orbit-finite

spanning set.
Assume to the contrary that such an orbit-finite spanning set 𝑋 ⊆ A fs→ F exists. Let 𝑘

be a number such that every function in 𝑋 is supported by at most 𝑘 atoms; such a number
exists since 𝑋 is orbit-finite. Fix any finite set 𝑇 of more than 𝑘 atoms. Define 𝜒𝑇 : A→ F to be
the characteristic function of the common neighborhood of 𝑇 , i.e. the function which maps an
atom to 1 if it has an edge to all atoms in 𝑇 , and otherwise maps the atom to 0. This function is
supported by 𝑇 , so it belongs to A

fs→ F.
Since the whole space is spanned by 𝑋 , there must be a linear equation:

𝜒𝑇 =

𝑛∑︁
𝑖=1

𝑓𝑖 (10)

with 𝑓𝑖 ∈ 𝑋 . Each 𝑓𝑖 is supported by some set 𝑆𝑖 ⊆ A with |𝑆𝑖 | ≤ 𝑘. Denote

𝑆 = 𝑇 ∪
𝑛⋃
𝑖=1

𝑆𝑖 .

For every subset 𝑈 ⊆ 𝑇 , pick an atom 𝑎𝑈 such that:
𝑎𝑈 is a neighbour of every atom in 𝑈 , and
𝑎𝑈 is not a neighbour of any atom in 𝑆 \𝑈 .

Such an atom exists by the universal property of the Rado graph.
Note that 𝜒𝑇 (𝑎𝑈) = 1 if and only if 𝑈 = 𝑇 .
Now consider a function 𝑓𝑖 from (10), supported by 𝑆𝑖 as above. Pick some atom 𝑏 ∈ 𝑇 \ 𝑆𝑖;

this is possible since |𝑇 | > |𝑆𝑖 |. Since 𝑓𝑖 is supported by 𝑆𝑖 , the value of 𝑓𝑖 on any atom 𝑎 depends
only on how 𝑎 is connected by edges to atoms in 𝑆𝑖 . This means that, for any 𝑈 ⊆ 𝑇 ,

𝑓𝑖 (𝑎𝑈\{𝑏}) = 𝑓𝑖 (𝑎𝑈) = 𝑓𝑖 (𝑎𝑈∪{𝑏})

(for every 𝑈 exactly one of these equations is trivial). As a result, the number of 𝑈 ’s for which
𝑓𝑖 (𝑎𝑈) = 1 is even. Summing up (10) over all 𝑈 ⊆ 𝑇 we therefore obtain:

1 =
∑︁
𝑈⊆𝑇

𝜒𝑇 (𝑎𝑈)
(10)
=

∑︁
𝑈⊆𝑇

𝑛∑︁
𝑖=1

𝑓𝑖 (𝑎𝑈) =
𝑛∑︁
𝑖=1

∑︁
𝑈⊆𝑇

𝑓𝑖 (𝑎𝑈) =
𝑛∑︁
𝑖=1

0 = 0,

a contradiction. ■

29 / 41 Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata

7. Minimization

Schützenberger’s original paper on weighted automata contained a minimization procedure.
We now describe a version of that procedure in the orbit-finite setting using the theory of
orbit-finitely spanned vector spaces from Section 6.

Consider a weighted orbit-finite automaton A with states 𝑄. We assume that the au-
tomaton is reachable, in the following sense: every vector in Lin𝑄 is a linear combination
of configurations corresponding to input words. For a vector 𝑣 ∈ Lin𝑄, define the weighted
language of 𝑣 to be the weighted language recognized by the automaton obtained from A by
setting the initial map to 𝑣, i.e. the initial weight of a state is its coefficient in the vector 𝑣. Define
the syntactic congruence ∼ to be the equivalence relation on Lin𝑄 which identifies two vectors
if the corresponding weighted languages are equal. It is not hard to see that ∼ is closed under
both linear combinations and applying atom automorphisms; as a result, one can speak of an
equivariant quotient vector space (Lin𝑄)/∼. Equivalently, this is the quotient of the vector space
Lin𝑄 under the subspace which consists of vectors 𝑣 whose corresponding weighted language
is 0 everywhere. This quotient space is orbit-finitely spanned by the equivalence classes of
states in 𝑄.

In the finite dimensional case studied by Schützenberger, a minimal automaton is obtained
by choosing some basis for this vector space, and using it as the state space of the minimal
automaton. This idea, however, will not work in the orbit-finite setting, due to the difficulties
with finding a basis that were described in Examples 6.1 and 6.2.

EXAMPLE 7.1. For the equality atoms and the field of rational numbers, consider the weighted
language 𝐿 : A∗ → F:

𝐿(𝑤) =

1 if 𝑤 = 𝑎𝑏𝑎 for some 𝑎 ≠ 𝑏 ∈ A,

−1 if 𝑤 = 𝑎𝑏𝑏 for some 𝑎 ≠ 𝑏 ∈ A,

0 otherwise.

This is recognized by a weighted orbit-finite automaton where the set of states 𝑄 is

{⊥}︸︷︷︸
initial weight 1
final weight 0

+ A + A(2)︸ ︷︷ ︸
initial weight 0
final weight 0

+ {⊤}︸︷︷︸
initial weight 0
final weight 1

and the transitions with nonzero weight are

(⊥, 𝑎, 𝑎), (𝑎, 𝑏, (𝑎, 𝑏)), ((𝑎, 𝑏), 𝑎,⊤)︸ ︷︷ ︸
weight 1

, ((𝑎, 𝑏), 𝑏,⊤)︸ ︷︷ ︸
weight -1

30 / 41 M. Bojańczyk, J. Fijalkow, B. Klin, J. Moerman

for every 𝑎 ≠ 𝑏 ∈ A. For the syntactic congruence ∼, it is not hard to see that (𝑎, 𝑏) ∼ −(𝑏, 𝑎) for
every 𝑎 ≠ 𝑏. The quotient space Lin𝑄/∼ is:

Lin({⊥,⊤} + A) ⊕ 𝑋,

where 𝑋 is the space from Example 6.2. This space has no finitely supported basis. ■

This example shows that in the orbit-finite setting the minimization procedure can leave
the realm of weighted orbit-finite automata as defined in Definition 3.1. To overcome this
issue, we use an alternative model for weighted automata, which we call orbit-finitely spanned
automata. These are deterministic automata where the state spaces are orbit-finitely spanned
vector spaces and all weight functions are linear maps.

DEF IN IT ION 7.2 (Orbit-finitely spanned automaton). An orbit-finitely spanned automaton
consists of:

1. an orbit-finite input alphabet Σ;
2. an orbit-finitely spanned vector space 𝑉 ;
3. a finitely supported transition function

𝛿 : 𝑉 × Σ → 𝑉

such that 𝑣 ↦→ 𝛿(𝑣, 𝑎) is a linear map for every 𝑎 ∈ Σ;
4. an initial vector 𝑣0 ∈ 𝑉 ;
5. a finitely supported linear map 𝐹 : 𝑉 → F.

An orbit-finitely spanned automaton recognizes a weighted language as expected: given
an input word, it computes an element of F by starting in the initial vector, then applying the
transition functions corresponding to the input letters, and finally applying the final function 𝐹.

THEOREM 7.3. Orbit-finitely spanned automata and weighted orbit-finite automata recognize
the same weighted languages.

PROOF . The proof resembles an analogous construction in the finite-dimensional setting, with
one important difference. If one converts a weighted orbit-finite automaton with states 𝑄 to
an orbit-finitely spanned automaton in the natural way, then the resulting vector space Lin𝑄
has an orbit-finite basis. Not every orbit-finitely spanned automaton arises this way though,
because we do not require the vector space to have an orbit-finite basis. A key step in the proof
is that every orbit-finitely spanned automaton is equivalent to one whose state space has a
basis. A detailed argument is provided in Appendix C. ■

One advantage of orbit-finitely spanned automata is that they can be minimized. Define a
homomorphism between orbit-finitely spanned automata A and B to be a finitely supported

31 / 41 Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata

linear map from the state space of A to the state space of B, which is consistent with the
structure of the automata in the natural way, see [5, Sec. 6.2]. If A is an orbit-finitely spanned
automaton that is reachable (i.e. its vector space is spanned by vectors that can be reached via
input words), and ∼ is its syntactic congruence (defined in the same way as for weighted orbit-
finite automata), then there is a well defined quotient automaton A/∼. This construction, dating
back to Schützenberger’s original paper [20] and described in detail e.g. in [4, Thm. 8.4], does
not depend on A being orbit-finitely spanned; in fact it applies to any weighted language over
any alphabet. However, if A is orbit-finitely spanned then so is A/∼. The quotient automaton
admits a (surjective) homomorphism from every reachable orbit-finitely spanned automaton
that recognizes the same weighted language as A. This property uniquely defines A/∼ up to
isomorphism, and so it can be called the minimal automaton.

We finish this section with a third perspective on weighted languages, this time phrased
in terms of monoids. Define an orbit-finitely spanned monoid to be a monoid (𝑀, ·, 1) where
the underlying set 𝑀 is an orbit-finitely spanned vector space, and the monoid operation is
bi-linear (i.e. linear in each of the two coordinates). We say that a weighted language 𝐿 : Σ∗ → F
is recognized by such a monoid if the diagram

Σ∗
ℎ
??

𝐿
//

𝑀
𝐹
��
F

commutes for some finitely supported monoid homomorphism ℎ and some finitely supported
linear map 𝐹.

The following result is somewhat unexpected, because in the non-weighted setting, orbit-
finite automata and orbit-finite monoids do not recognize the same languages [5, Exercise 91].

THEOREM 7.4. Orbit-finitely spanned monoids recognize the same weighted languages as
weighted orbit-finite automata and orbit-finitely spanned automata.

PROOF . From an orbit-finitely spanned monoid we can easily construct an orbit-finitely
spanned automaton, with the same underlying vector space. For the converse direction, starting
with a weighted orbit-finite automaton with states𝑄, we build a monoid out of finitely supported
functions:

𝑓 : (𝑄 × 𝑄) fs→ F

such that for every 𝑝 ∈ 𝑄 there are finitely many states 𝑞 ∈ 𝑄 such that 𝑓 (𝑝, 𝑞) ≠ 0. By
Theorem 6.7, this vector space is orbit-finitely spanned. The monoid operation is defined by:

(𝑓 · 𝑔) (𝑝, 𝑞) =
∑︁
𝑟∈𝑄

𝑓 (𝑝, 𝑟) · 𝑔 (𝑟, 𝑞),

32 / 41 M. Bojańczyk, J. Fijalkow, B. Klin, J. Moerman

with the sum being finite by the assumption on 𝑓 . This operation is finitely supported and bi-
linear. The recognizing homomorphism is built using the same construction as when converting
a nondeterministic automaton into a monoid. ■

An advantage of the monoid approach is the symmetry between reading the input word
left-to-right and right-to-left. In particular, the languages recognized by orbit-finitely spanned
monoids are easily seen to be closed under reversals; this is harder to see for the remaining
models.

8. Application to unambiguous automata

A classical application of weighted automata is a polynomial-time algorithm for language
equivalence of unambiguous finite automata, i.e., nondeterministic automata with at most one
accepting run for every input word. Two unambiguous finite automata are equivalent (i.e. they
recognize the same language) if and only if they have the same number of accepting runs for
every input word (since the number of accepting runs is zero or one). For every nondeterministic
finite automaton, one can easily construct in polynomial time a weighted finite automaton
which maps every input word to the number of accepting runs of the nondeterministic finite
automaton; and therefore two unambiguous finite automata are equivalent if and only if the
corresponding weighted finite automata are equivalent.

In this section, we show how this result can be lifted from finite to orbit-finite automata.
Consider first the case of unambiguous orbit-finite automata which are non-guessing, in the
sense that they have finitely many initial states, and for every state 𝑞 and input letter 𝜎, there are
finitely many transitions of the form (𝑞, 𝑎, 𝑝). As explained in Example 3.3, for such automata
we can easily count runs using a weighted orbit-finite automaton, and thus we can solve the
language equivalence problem in the same time as in Theorem 3.5. However, our techniques
apply also to unambiguous orbit-finite automata without the non-guessing restriction.

THEOREM 8.1. Assume that the atoms are either (N,=) or (Q, <). The equivalence problem for
equivariant3 unambiguous register automata4, which are allowed to use guessing, is in ExpTime,
and in polynomial time when the number of registers is fixed.

This improves on previous work [16, 15] in that: (a) we allow unrestricted guessing; (b)
we allow ordered atoms and not just equality atoms; and (c) we improve the previous upper
bounds of 2ExpSpace for an unbounded number of registers and ExpSpace for a fixed number
of registers.

3 As for Theorem 3.5, this theorem would also work for finitely supported automata, but the notation would become
more involved.

4 We formulate the theorem using unambiguous register automata, see [16, Sect. 2] and not for general unambiguous
orbit-finite automata, so that it can be more easily compared to existing results in the literature. However, the entire
proof works for the general case.

33 / 41 Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata

The rest of this section is devoted to proving the above theorem. The main observation
is that an orbit-finitely spanned automaton can count accepting runs for a nondeterministic
orbit-finite automaton, as stated in the following lemma.

LEMMA 8.2. Consider an equivariant nondeterministic orbit-finite automaton A, which has
finitely many accepting runs for every input word. There is an equivariant orbit-finitely spanned
automaton B, over the field of rational numbers, which outputs for every word the number of
accepting runs of A. Furthermore, the length of the vector space used by the automaton B is at
most

2𝑝𝑜𝑙 𝑦(𝑘) · 𝑛𝑂(𝑘) . (11)

where 𝑘 and 𝑛 are as in Theorem 3.5.

PROOF . Let Σ be the input alphabet, and let 𝑄 be the state space of A. Without loss of gener-
ality we assume that every state can reach some accepting state; the remaining states can be
eliminated from the automaton without affecting the recognized language or the numbers of
accepting runs [5, Cor. 9.12].

For an input word 𝑤 ∈ Σ∗, define its configuration

[𝑤] ∈ 𝑄
fs→ F

to be the function which maps each state 𝑞 to the number of runs on 𝑤 that begin in an initial
state and end in the state 𝑞. The configuration produces only finite numbers, because there
cannot be a state 𝑞 that can be reached via infinitely many runs over the same input word 𝑤;
otherwise we could append some word to 𝑤 and get infinitely many accepting runs. Define

𝑉 = Span{[𝑤] : 𝑤 ∈ Σ∗} ⊆ 𝑄
fs→ F

to be the subspace of 𝑄
fs→ F that is spanned by configurations. Although the definition of 𝑉

uses a spanning set that is not necessarily orbit-finite (because Σ∗ is not orbit-finite), the space𝑉
is orbit-finitely spanned, as an equivariant subspace of an orbit-finitely spanned vector space,
see Theorems 6.5 and 6.7.

We use 𝑉 as the state space of a orbit-finitely spanned automaton B. Let us first prove
the length bound (11). It is enough to prove the bound for the length of 𝑄

fs→ F, since 𝑉 is an
equivariant subspace of it. To this end, note that the set 𝑄 can be decomposed as a disjoint
union of 𝑛 single-orbit sets with dimension at most 𝑘. Since

length((𝑄1+𝑄2)
fs→F) = length(𝑄1

fs→F) + length(𝑄2
fs→F)

34 / 41 M. Bojańczyk, J. Fijalkow, B. Klin, J. Moerman

it is enough to show that every equivariant single-orbit set 𝑃 of atom dimension at most 𝑘
satisfies

length(𝑃 fs→ F) ≤ 2𝑝𝑜𝑙 𝑦(𝑘) .

Since 𝑃
fs→ F embeds into A(𝑘) fs→ F, it is enough to show that the length of the latter space is at

most exponential in 𝑘. This follows from the proof of Theorem 6.7.
We now describe the remaining structure of the orbit-finitely spanned automaton. The

initial state is the configuration [𝜀], which maps initial states to 1 and non-initial states to 0. Let
us now define the transition functions. For an input letter 𝜎 ∈ Σ, define a function 𝛿𝜎 : 𝑉 → 𝑉

as follows ∑︁
𝑖∈𝐼

𝛼𝑖 [𝑤𝑖] ↦→
∑︁
𝑖∈𝐼

𝛼𝑖 [𝑤𝑖𝜎] .

We need to justify that this is well-defined. A potential problem is that the same element
of 𝑉 might have several decompositions as weighted sums of configurations, and the output
of 𝛿𝜎 should not depend on the choice of decomposition. Consider an element of 𝑉 with two
decompositions: ∑︁

𝑤∈𝑊
𝛼𝑤[𝑤] =

∑︁
𝑤∈𝑊

𝛽𝑤[𝑤],

for some finite set𝑊 ⊆ Σ∗ of input words, and some coefficients 𝛼𝑤, 𝛽𝑤 ∈ F. We need to show
that 𝛿𝜎 produces the same output for both decomposition, i.e.∑︁

𝑤∈𝑊
𝛼𝑤[𝑤𝜎] =

∑︁
𝑤∈𝑊

𝛽𝑤[𝑤𝜎] . (12)

Both sides in (12) are functions from 𝑄 to F, so to prove the equality we need to show that both
sides give the same output for every state 𝑞 ∈ 𝑄. For a fixed 𝑞, let 𝑃 be the set of states 𝑝 ∈ 𝑄 such
that the automaton has a transition (𝑝, 𝜎, 𝑞), and furthermore 𝑝 appears in the configuration of
some 𝑤 ∈𝑊 with nonzero coefficient. An important observation is that 𝑃 is a finite set: because
the automaton A has finitely many accepting runs for every input word, the set 𝑃 contains
finitely many states for every word in 𝑊 . For every word 𝑤 ∈𝑊 we have

[𝑤𝜎] (𝑞) =
∑︁
𝑝∈𝑃

[𝑤] (𝑝).

Therefore, to prove (12), we need to show∑︁
𝑤∈𝑊
𝑝∈𝑃

𝛼𝑤[𝑤] (𝑝) =
∑︁
𝑤∈𝑊
𝑝∈𝑃

𝛽𝑤[𝑤] (𝑝).

35 / 41 Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata

This equality is indeed true, because our assumption implies a stronger equality, namely that
for every 𝑝 ∈ 𝑃 we have ∑︁

𝑤∈𝑊
𝛼𝑤[𝑤] (𝑝) =

∑︁
𝑤∈𝑊

𝛽𝑤[𝑤] (𝑝).

The function 𝛿𝜎 is clearly a linear map, and thus we can set the transition function of
the automaton to be 𝛿(𝑣, 𝜎) = 𝛿𝜎 (𝑣). The automaton is defined so that after reading an input
word 𝑤, its state is [𝑤]. The final map simply takes a configuration to the sum of all coefficients
that are accepting states. This concludes the proof of Lemma 8.2. ■

PROOF OF THEOREM 8.1 . Consider two unambiguous register automata A1 and A2 for
which we want to decide equivalence. Apply Lemma 8.2 to each one of them, yielding orbit-
finitely spanned automata B1 and B2. Using a product construction, we get another orbit-finitely
spanned automaton B that outputs zero for words where the automata A1 and A2 agree, and
nonzero for other words. The length of the vector space in B is at most twice the length of the
vector spaces in B1 and B2, and hence it is at most

2𝑝𝑜𝑙 𝑦(𝑘) · 𝑛𝑂(𝑘) (13)

where 𝑘 is the maximal number of registers used by the automata, and 𝑛 is the sum of the
numbers of control states. As in the proof of Theorem 3.5, we conclude that the automata A1

and A2 are equivalent if and only if they are equivalent using input words and runs that
use a number of atoms as bounded by (13), and the latter equivalence can be tested using
Schützenberger’s polynomial time algorithm for equivalence on weighted finite automata. ■

Acknowledgments.
We are grateful to Arka Ghosh, Sławomir Lasota and Jingjie Yang, who found significant mistakes
in previous versions of this paper.

References
[1] Borja Balle and Mehryar Mohri. Learning weighted
automata. International Conference on Algebraic
Informatics, pages 1–21. Springer, 2015. DOI (2)

[2] Corentin Barloy and Lorenzo Clemente.
Bidimensional linear recursive sequences and
universality of unambiguous register automata.
38th International Symposium on Theoretical
Aspects of Computer Science (STACS), volume 187
of LIPIcs, 8:1–8:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021. DOI (2, 3)

[3] Andreas Blass. Existence of bases implies the
axiom of choice. Contemporary Mathematics,
31:31–33, 1984. (23)

[4] Mikołaj Bojańczyk. An automata toolbox, 2024.
Draft from February 6, 2024. URL (31)

[5] Mikołaj Bojańczyk. Slightly infinite sets, 2019. Draft
from September 11, 2019. URL (3–7, 14, 28, 31,
33, 40)

[6] Mikołaj Bojańczyk, Bartek Klin, and
Slawomir Lasota. Automata theory in nominal sets.
Log. Methods Comput. Sci. 10(3), 2014. DOI (6,
11, 15)

[7] Mikołaj Bojańczyk, Bartek Klin, and
Joshua Moerman. Orbit-finite-dimensional vector
spaces and weighted register automata. 36th
Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), 2021. DOI (1, 4)

[8] Mikołaj Bojańczyk and Rafal Stefanski. Single use
register automata for data words. CoRR,
abs/1907.10504, 2019. DOI (40, 41)

https://doi.org/10.1007/978-3-319-23021-4_1
https://doi.org/10.4230/LIPIcs.STACS.2021.8
https://www.mimuw.edu.pl/~bojan/papers/toolbox.pdf
https://www.mimuw.edu.pl/~bojan/upload/main-10.pdf
https://doi.org/10.2168/LMCS-10(3:4)2014
https://doi.org/10.1109/LICS52264.2021.9470634
https://doi.org/10.48550/arXiv.1907.10504

36 / 41 M. Bojańczyk, J. Fijalkow, B. Klin, J. Moerman

[9] Thomas Colcombet. Unambiguity in automata
theory. Descriptional Complexity of Formal Systems
(DCFS), volume 9118 of Lecture Notes in Computer
Science, pages 3–18. Springer, 2015. DOI (2)

[10] Arka Ghosh, Piotr Hofman, and Slawomir Lasota.
Solvability of orbit-finite systems of linear
equations. 37th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), 2022. DOI (22,
23)

[11] K. R. Goodearl and R. B. Warfield Jr. An Introduction
to Noncommutative Noetherian Rings. London
Mathematical Society Student Texts. Cambridge
University Press, 2nd edition, 2004. DOI (11)

[12] Michael Kaminski and Nissim Francez.
Finite-Memory Automata. Theor. Comput. Sci.
134(2):329–363, 1994. DOI (2, 8)

[13] Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine,
Björn Wachter, and James Worrell. On the
complexity of equivalence and minimisation for
q-weighted automata. Log. Methods Comput. Sci.
9(1), 2013. DOI (8)

[14] Daniel Krob. The equality problem for rational
series with multiplicities in the tropical semiring is
undecidable. 19th International Colloquium on
Automata, Languages, and Programming (ICALP),
pages 101–112, Berlin, Heidelberg. Springer Berlin
Heidelberg, 1992. DOI (2)

[15] Antoine Mottet and Karin Quaas. On the
containment problem for unambiguous
single-register automata with guessing. CoRR,
abs/1905.12445, 2019. DOI (2, 3, 32)

[16] Antoine Mottet and Karin Quaas. The containment
problem for unambiguous register automata and
unambiguous timed automata. Theory of
Computing Systems, 65:706–735, 2021. DOI (2, 3,
32)

[17] Masakazu Nasu and Namio Honda. Mappings
induced by PGSM-mappings and some recursively
unsolvable problems of finite probabilistic
automata. Information and Control, 15(3):250–273,
1969. DOI (2)

[18] Frank Neven, Thomas Schwentick, and
Victor Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Log.
5(3):403–435, 2004. DOI (2)

[19] Andrew M. Pitts. Nominal Sets: Names and
Symmetry in Computer Science, volume 57 of
Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2013. DOI (3, 5)

[20] Marcel Paul Schützenberger. On the definition of a
family of automata. Information and control,
4(2–3):245–270, 1961. DOI (1, 2, 31)

[21] David Turner and Glynn Winskel. Nominal domain
theory for concurrency. 18th EACSL Annual
Conference on Computer Science Logic (CSL),
volume 5771 of Lecture Notes in Computer Science,
pages 546–560, 2009. DOI (15)

https://doi.org/10.1007/978-3-319-19225-3_1
https://doi.org/10.1145/3531130.3533333
https://doi.org/10.1017/CBO9780511841699
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.2168/LMCS-9(1:8)2013
https://doi.org/10.1007/3-540-55719-9_67
https://doi.org/10.48550/arXiv.1905.12445
https://doi.org/10.1007/s00224-020-09997-2
https://doi.org/10.1016/S0019-9958(69)90449-5
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1017/CBO9781139084673
https://doi.org/10.1016/S0019-9958(61)80020-X
https://doi.org/10.1007/978-3-642-04027-6_39

37 / 41 Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata

A. Proof of Lemma 4.3

For item (i), let 𝑔 : 𝑊 →𝑊/𝑉 be the (equivariant) quotient map. For the “≥” direction, for any
chains:

𝑉1 ⊊ · · · ⊊ 𝑉𝑛 ⊊ 𝑉 (𝑛 proper inclusions)

𝑈1 ⊊ · · · ⊊ 𝑈𝑚 ⊊𝑊/𝑉 (𝑚 proper inclusions)

the chain
𝑉1 ⊊ · · · ⊊ 𝑉𝑛 ⊊ 𝑉 ⊆ 𝑔−1(𝑈1) ⊊ · · · ⊊ 𝑔−1(𝑈𝑚) ⊊𝑊

has 𝑛 +𝑚 proper inclusions. For the “≤” direction, for any chain of proper inclusions:

𝑊1 ⊊ · · · ⊊𝑊𝑛 ⊊𝑊 (14)

consider chains:

𝑊1 ∩𝑉 ⊆ · · · ⊆ 𝑊𝑛 ∩𝑉 ⊆ 𝑉 (15)
−→
𝑔 (𝑊0) ⊆ · · · ⊆ −→

𝑔 (𝑊𝑛) ⊆ 𝑊/𝑉. (16)

All these inclusions are not necessarily proper. However, if the 𝑖-th inclusion in the first chain is
an equality:

𝑊𝑖 ∩𝑉 =𝑊𝑖+1 ∩𝑉

then there is some 𝑣 ∈𝑊𝑖+1 \𝑊𝑖 such that 𝑣 ∉ 𝑉 . Since 𝑉 is the kernel of 𝑔 , the 𝑖-th inclusion in
the second chain is then proper:

−→
𝑔 (𝑊𝑖) ⊊ −→

𝑔 (𝑊𝑖+1),

so the length of (14) does not exceed the sum of lengths of (15) and (16).
For item (ii), apply item (i) to 𝑊 = Lin(𝑃 + 𝑄) and 𝑉 = Lin 𝑃, noting that then 𝑊/𝑉 = Lin𝑄.
For item (iii), assume an equivariant surjection 𝑞 : 𝑃 → 𝑄, let 𝑞 : Lin 𝑃 → Lin𝑄 be the

unique linear extension of 𝑞, and apply item (i) to 𝑊 = 𝑃 and 𝑉 = ker(𝑞), noting that then
𝑊/𝑉 = Lin𝑄.

B. Proof of Lemma 4.15

We shall proceed by induction on 𝑛. In the process we will need to consider a slightly more
general notion: an affine subspace of A is a set of the form 𝐴 = 𝑣 ⊕ 𝑉 , for an atom 𝑣 ∈ A and a
vector subspace 𝑉 ⊆ A. This is called 𝑛-dimensional if 𝑉 is.

For any 𝑎 ∈ D, let A𝑎
0 be the set of all those atoms that do not contain 𝑎. This, of course, is a

vector subspace of A. Similarly, A𝑎
1 is the set of all those atoms that do contain 𝑎. This is not a

38 / 41 M. Bojańczyk, J. Fijalkow, B. Klin, J. Moerman

vector subspace, but it is an affine subspace of A; indeed A𝑎
1 = 𝑣 ⊕ A𝑎

0 for any 𝑣 ∈ A𝑎
1. Obviously

A = A𝑎
0 ⊎ A𝑎

1.

LEMMA B.1. For any 𝑛-dimensional affine space 𝐴, a generator 𝑎 ∈ D and 𝑖 = {0, 1}, the
intersection A𝑎

𝑖
∩ 𝐴:

is empty, or
is equal to 𝐴, or
is an (𝑛 − 1)-dimensional affine space.

PROOF . First, consider the special case where 𝐴 is a vector space, 𝐴 = 𝑉 . Then, for 𝑖 = 0,
A𝑎

0 is a vector space, hence A𝑎
0 ∩𝑉 is a vector space as well, and either it is equal to 𝑉 or it is

(𝑛 − 1)-dimensional. For 𝑖 = 1, assume A𝑎
1 ∩ 𝑉 is nonempty and pick some 𝑣 ∈ A𝑎

1 ∩ 𝑉 . Then
A𝑎

1 = 𝑣 ⊕ A𝑎
0 and, since 𝑉 is a vector space, 𝑉 = 𝑣 ⊕ 𝑉 . Then:

A𝑎
1 ∩𝑉 = (𝑣 ⊕ A𝑎

0) ∩ (𝑣 ⊕ 𝑉) = 𝑣 ⊕ (A𝑎
0 ∩𝑉).

where the second equality is by Lemma 4.13(ii). The intersection on the right is a vector space;
it cannot be equal to 𝑉 (because 𝑣 is not in it), so it must be (𝑛 − 1)-dimensional.

Now consider the general case of an arbitrary affine space 𝐴. Let 𝐴 = 𝑣 ⊕ 𝑉 for some atom
𝑣 and an 𝑛-dimensional vector space 𝑉 . For 𝑖 = 0:

A𝑎
0 ∩ (𝑣 ⊕ 𝑉) = 𝑣 ⊕ (A𝑎

𝑣(𝑎) ∩𝑉),

where 𝑣(𝑎) ∈ {0, 1} is the coefficient of 𝑎 in 𝑣. Indeed, for the left-to-right inclusion, take any
𝑤 ∈ 𝑉 such that (𝑣 ⊕ 𝑤) (𝑎) = 0 or, equivalently, 𝑣(𝑎) = 𝑤(𝑎). Then 𝑤 ∈ A𝑎

𝑣(𝑎) ∩ 𝑉 . For the
right-to-left inclusion, do the same backwards.

Then use the special case for the vector space 𝑉 and 𝑖 = 𝑣(𝑎).
The argument for 𝑖 = 1 is essentially the same. ■

PROOF OF LEMMA 4.15 . We prove a more general statement, where 𝐴1, 𝐴2, . . . , 𝐴𝑘 are affine
𝑛-dimensional subspaces, and not necessarily vector subspaces. We proceed by induction on
the dimension 𝑛. For the base case, 𝑛 = 1, observe that for every finite family 𝐴1, 𝐴2, . . . , 𝐴𝑘 of
finite-dimensional affine subspaces of A, the symmetric difference 𝐴1 ÷ 𝐴2 ÷ · · · ÷ 𝐴𝑘 has even
size. Indeed, each 𝐴𝑖 is of even size, and sets of even size are closed under taking symmetric
differences.

For the induction step, consider a family of 𝑛-dimensional affine spaces 𝐴1, . . . , 𝐴𝑘, and
denote

𝑋 = 𝐴1 ÷ · · · ÷ 𝐴𝑘 .

39 / 41 Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata

Assume that 𝑋 is nonempty. Then, as we have seen above, is must contain at least two different
atoms; pick some generator 𝑎 on which some atoms in 𝑋 differ. Then both intersections

A𝑎
0 ∩ 𝑋 and A𝑎

1 ∩ 𝑋

are nonempty.
By Lemma 4.13(i):

A𝑎
0 ∩ 𝑋 = (A𝑎

0 ∩ 𝐴1) ÷ · · · ÷ (A𝑎
0 ∩ 𝐴𝑘),

A𝑎
1 ∩ 𝑋 = (A𝑎

1 ∩ 𝐴1) ÷ · · · ÷ (A𝑎
1 ∩ 𝐴𝑘).

By Lemma B.1, both expressions to the right are symmetric differences of (𝑛 − 1)-dimensional
affine spaces. Some care is needed when (as is allowed by Lemma B.1), A𝑎

𝑖
∩ 𝐴 𝑗 = 𝐴 𝑗 . In this

case, present 𝐴 𝑗 as
𝐴 𝑗 = 𝑣 ⊕ 𝑉,

use Lemma 4.14 to represent𝑉 as a symmetric difference of all its (𝑛−1)-dimensional subspaces,
and apply Lemma 4.13(iii).

By the inductive assumption A𝑎
0 ∩ 𝑋 is either empty or has size at least 2𝑛−1, and similarly

for A𝑎
1 ∩ 𝑋 . But we have picked 𝑎 so that both these intersections are nonempty, so 𝑋 has size at

least 2𝑛 as required. ■

C. Equivalence of linear andweighted automata

We begin with the easier inclusion.

LEMMA C.1. For every weighted orbit-finite automaton W there is an orbit-finitely spanned
automaton L which recognizes the same weighted language.

PROOF . If 𝑄 are the states of W, then the vector space of L is Lin𝑄, and the transition function

𝛿 : Lin𝑄 × A→ Lin𝑄

is defined so that for every input letter 𝑎 ∈ Σ and states 𝑞, 𝑝 ∈ 𝑄 (which are basis vectors of the
vector space Lin𝑄), the coefficient for state 𝑝 in the vector 𝛿(𝑞, 𝑎) is the weight of the transition
(𝑞, 𝑎, 𝑝). In other words, linear map 𝛿(, 𝑎) is defined by a 𝑄 ×𝑄 matrix where the coefficient in
a cell (𝑞, 𝑝) is the weight of the transition (𝑞, 𝑎, 𝑝). Note how condition (*) from Definition 3.1
ensures that the 𝛿(𝑞, 𝑎) is a well-defined vector, in the sense that it has finitely many nonzero
coordinates. The initial vector of L consists of the initial weights in W, and the final function
is the linear extension of the original final weight function. ■

40 / 41 M. Bojańczyk, J. Fijalkow, B. Klin, J. Moerman

EXAMPLE C.2. Recall the weighted orbit-finite automaton from Example 7.1. We have already
described the state space of the corresponding orbit-finitely spanned automaton:

𝑉 = Lin({⊥,⊤} + A) ⊕ 𝑋,

and we will now define the rest of it. We define the transition function on the generators of the
state space:

𝛿(⊥, 𝑎) = 𝑎 𝛿(⊤, 𝑎) = 0 𝛿(𝑎, 𝑏) = (𝑎, 𝑏) − (𝑏, 𝑎)

𝛿((𝑎, 𝑏) − (𝑏, 𝑎), 𝑐) =

⊤ if 𝑐 = 𝑎,

−⊤ if 𝑐 = 𝑏,

0 otherwise.

Formally, one has to show that 𝛿 is well-defined on 𝑋 , i.e. it satisfies

𝛿((𝑎, 𝑏) − (𝑏, 𝑎), 𝑐) = −𝛿((𝑏, 𝑎) − (𝑎, 𝑏), 𝑐).

Similarly for the final function, we define it for generators:

𝐹 (⊥) = 0 𝐹 (⊤) = 1 𝐹 (𝑎) = 0 𝐹 ((𝑎, 𝑏) − (𝑏, 𝑎)) = 0.

The initial vector is simply 𝑣0 = ⊥. This automaton accepts the same language 𝐿 and is in fact
minimal. ■

Call an orbit-finitely spanned automaton basic if its state vector space has a basis. For
a basic automaton an equivalent weighted orbit-finite automaton can be easily produced, by
using the basis as the states. Therefore, to complete the proof of Theorem 7.3, we prove the
following:

LEMMA C.3. For every orbit-finitely spanned automaton, there is a basic one that recognizes
the same weighted language.

PROOF . Consider an orbit-finitely spanned automaton A where the state space 𝑉 is spanned
by an orbit-finite set 𝑄. Define a polynomial orbit-finite set, see [8, Definition 1], to be any set
which is a finite disjoint union of sets of the form A𝑘. As for every orbit-finite set, there exists a
polynomial orbit-finite set 𝑃 with a surjective finitely supported function from 𝑃 to 𝑄. Extend
this function to surjective a linear map

ℎ : Lin 𝑃 → 𝑉.

We will define a orbit-finitely spanned automaton B with the state space Lin 𝑃 so that ℎ becomes
a homomorphism of orbit-finitely spanned automata, that is: a finitely supported linear map
between the underlying vector spaces, which is consistent with the initial states, transition
functions and final functions in the expected way, see [5, Sec. 6.2]. If two orbit-finitely spanned

41 / 41 Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata

automata are connected by a homomorphism, then they recognize the same weighted language.
Therefore, to prove the lemma it remains to define the initial state, transition function and final
function in B so that ℎ is a homomorphism.

For the initial state in B we choose some vector that is mapped by ℎ to the initial state
of A, and for the final function we use the composition of ℎ and the final function of A. To
define the transition function, we construct a finitely supported function 𝛾 which makes the
following diagram commute:

𝑃 × Σ 𝛾 //

(ℎ,𝑖𝑑)
��

Lin 𝑃
ℎ
��

𝑉 × Σ transition function of A
//𝑉

To this end, consider the composition of the following relations: the function (ℎ, 𝑖𝑑), the transi-
tion function of A, and the inverse of ℎ. This is a finitely supported binary relation

𝑅 ⊆ (𝑃 × Σ) × Lin 𝑃

such that every element of 𝑃 × Σ is related with at least one element of Lin 𝑃 (thanks to the
surjectivity of ℎ). By the Uniformization Lemma from [8, Lemma 20], there exists a finitely
supported function 𝛾 which is contained in 𝑅, thus proving the lemma. It is worth pointing out
that the Uniformization Lemma changes supports: even if 𝑅 is equivariant, it could be the case
that 𝛾 needs non-empty support.

Using linearity, 𝛾 extends to a finitely supported function

�̄� : Lin 𝑃 × Σ → Lin 𝑃

which is a linear map for every fixed input letter; the resulting function can then be used as the
transition function for B. The commuting diagram above ensures that ℎ is a homomorphism of
automata. ■

2024 : 13
This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Mikołaj Bojańczyk, Joanna Fijalkow, Bartek Klin, Joshua Moerman.

	Introduction
	Orbit-finite sets
	Weighted orbit-finite automata
	Finite length property
	Equality and ordered atoms
	Length of finitely supported chains
	A lower bound on length
	Failure of finite length: vector atoms

	The equivalence algorithm
	Vector spaces with atoms
	Minimization
	Application to unambiguous automata
	References
	Proof of Lemma 4.3
	Proof of Lemma 4.15
	Equivalence of linear and weighted automata

