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Motivated by information sharing in online platforms, we study repeated persuasion between a sender and a

stream of receivers where at each time, the sender observes a payoff-relevant state drawn independently and

identically from an unknown distribution, and shares state information with the receivers who each choose

an action. The sender seeks to persuade the receivers into taking actions aligned with the sender’s preference

by selectively sharing state information. However, in contrast to the standard models, neither the sender nor

the receivers know the distribution, and the sender has to persuade while learning the distribution on the fly.

We study the sender’s learning problem of making persuasive action recommendations to achieve low

regret against the optimal persuasion mechanism with the knowledge of the distribution. To do this, we first

propose and motivate a persuasiveness criterion for the unknown distribution setting that centers robustness

as a requirement in the face of uncertainty. Our main result is an algorithm that, with high probability,

is robustly-persuasive and achieves O(
√
T logT ) regret, where T is the horizon length. Intuitively, at each

time our algorithm maintains a set of candidate distributions, and chooses a signaling mechanism that is

simultaneously persuasive for all of them. Core to our proof is a tight analysis about the cost of robust

persuasion, which may be of independent interest. We further prove that this regret order is optimal (up to

logarithmic terms) by showing that no algorithm can achieve regret better than Ω(
√
T ).

Key words : no-regret learning, robustness, persuasion, prior-independence

1. Introduction

Examples of online platforms recommending content or products to their users abound in online

economy. For instance, online retailers like Amazon or Etsy recommend products from third-party

sellers to users, styling services like Stitch Fix recommend clothing designs made by custom brands,
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and online platforms like YouTube or Spotify recommend content or playlist generated by creators.

There are two intrinsic challenges in such online recommendations, which we address simultaneously

in this paper. First, the platform making such recommendations often needs to balance the dual

objectives of being persuasive (i.e., making obedient recommendations that will be adopted by the

users (Bergemann and Morris 2016)) as well as furthering the platform’s goals such as increased

sales, fewer returns or more engaged users. Second, the platform often faces a large volume of

new products/contents/services with a priori unknown quality/reward distributions and thus has

to learn to make good recommendation. We tackle these two challenges by studying learning to

persuade on the fly.

1.1. Motivating Applications

To motivate the problem we consider, we now describe two concrete examples in the domain of

two-sided platforms.

Example 1 (Content recommendations by online media platforms). Consider a media

platform like YouTube or TikTok, that recommends content created by independent creators

(“channels”) to its users. New channels regularly join the platform, and start producing content

whose quality distribution is unknown to both the platform and its users. Here, by a content’s

quality, we refer to how engaging, interesting or relevant the users find the content. Despite this lack

of knowledge, the platform faces the problem of deciding whether to recommend content from such

new channels to its stream of users. In this context, the users seek to consume fresh and high-quality

content, while the platform itself may have other goals, such as maximizing user engagement or

increasing channel exposure, which are not fully aligned with users’ interests. Furthermore, from

extensive user-level data, the platform may have good estimates about the utility a user derives from

consuming a particular content. A user encountering a new channel may have a prior belief about

its quality distribution based on their past experiences in the platform, and from any information

provided by the channel itself on their profile. Furthermore, the user may have additional (partial)

information from any reviews or ratings left by previous users (or similar summary statistics).
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For each new content from a channel, the platform observes its quality (perhaps after an initial

exploration or through in-house reviewers) and decides whether or not to recommend the content to

its users. If the platform and the users know a channel’s content quality distribution, the platform

can reliably make recommendations that optimize its own goals while maintaining user satisfaction,

by consistently mixing high-quality content with some mediocre ones. However, given the lack of

such distributional information, the platform must learn to make such recommendations over time,

as the channel produces more content. □

Example 2 (Recommendations on hiring platforms). Consider a hiring platform, where

employers receive recommendations about candidates for recruitment (e.g., “recommended matches”

in LinkedIn Recruiter). These recommendations are typically tailored to the employer’s project

requirements. However, within the set of candidates satisfying the requirements, there would be a

range of capabilities/fit, whose distribution would be unknown to the platform or the employer.

Nevertheless, for any particular candidate who might be interested in the position, the platform

may be able to assess the candidate’s capability based on various candidate features, such as her

endorsements, references, etc, using which the platform decides whether or not to recommend

the candidate. Similarly, the employer through the course of interviewing different candidates

may learn about the capability distribution. While the employer would prefer to be matched with

few high-capability candidates to interview, the platform may have additional incentives from

having to cater to the candidates-side of the market, such as increasing the overall number of

interviews. Once again, if the distribution of the candidates’ capabilities is known to the platform

and the employer, the platform could reliably recommend candidates to optimize its goals while

simultaneously meeting the employer’s preferences. But, without such information, the platform

needs to learn to recommend candidates as they apply over time. □

This paper studies the problem faced by such a platform learning to make persuasive recom-

mendations to a stream of users. While previous work has studied information design in two-sided

markets — ranging from recommending products from third-party sellers on e-commerce platforms
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like Amazon and eBay (Gur et al. 2023, Elliott et al. 2022), recommending drivers by sharing

demand trend on ride-sharing services like Uber and Lyft (Yang et al. 2019), to accommodation

and rental recommendations in Airbnb (Romanyuk and Smolin 2019) — the common assumption is

that the platform knows the underlying state distribution. Our work contributes to this literature

by relaxing this strong assumption.

1.2. Modeling contributions

Formally, we study a repeated persuasion setting between a sender and a stream of receivers, where

at each time t, the sender shares some information correlated to some payoff-relevant state with the

corresponding receiver. The state at each time t is drawn independently and identically from an

unknown distribution, and subsequent to receiving information about it, the newly-arriving myopic

receiver chooses an action from a finite set, generates payoffs, and then leaves the system forever.

The sender seeks to persuade this stream of receivers into choosing actions that are aligned with

her preference by selectively sharing information about the state at each round.

To tackle the practical challenge of making recommendations in the absence of distributional data,

we depart from the standard Bayesian persuasion setting and consider situations where neither the

sender nor the receiver knows the distribution of the payoff relevant state. Instead, the sender learns

this distribution over time by observing the state realizations. We adopt the assumption common

in the literature on Bayesian persuasion that the sender commits to a signaling mechanism that,

at each time step, maps the realized state to a possibly random action recommendation. Such a

commitment assumption is well-justified for settings of interest to this work since online platforms

typically design and implement the information sharing policy as software in advance, rendering

frequent changes unlikely. This advance design serves as a commitment device organically.

Certainly, the sender cannot freely make arbitrary recommendations, if the expectation is that

these recommendations would influence the receivers’ actions. A natural requirement is for the

sender to make recommendations that the receiver will find optimal to follow, i.e., recommendations

that are persuasive. This incentive compatibility requirement can be easily justified by an application
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of the revelation principle. In the case where the sender and the receivers know the state distribution,

the persuasiveness requirement implies that, subsequent to each recommendation, the recommended

action maximizes the receiver’s expected utility under the conditional state distribution (given the

recommendation). However, in the absence of such distributional knowledge, it is not immediately

clear how to impose persuasiveness.

Our main modeling contribution addresses this issue by proposing a natural criteria for per-

suasiveness when neither the sender nor the receivers know the state distribution. The starting

point of our approach is the observation that any persuasiveness criteria directly corresponds

to a model of receivers’ response on receiving a recommendation (just as in the case of known

state distribution). Thus, by considering reasonable behavioral models for the receiver, we develop

in Section 2.2 a persuasiveness criterion that centers robustness as a requirement in the face of

uncertainty. Specifically, our criterion requires that the sender’s recommendations are persuasive

under all state distributions in a set of “confidence regions” which contain the true distribution

with a given degree of confidence; these confidence regions shrink over time as the sender observes

more state realizations. This is in line with the approach in statistics that uses confidence regions to

address the uncertainty in parameter estimates. Furthermore, this robustness requirement naturally

leads to conservative recommendations, thereby making it likely that the recommendations will be

accepted. We refer to this notion as β-robustly persuasiveness where 1−β denotes the confidence

level.

1.3. Algorithmic contribution and regret characterization

A sender who simply recommends the receiver’s best action at the realized state will certainly

be persuasive with complete confidence (β = 0), but may end up with a significant loss in her

utility when compared to her utility had she known the state distribution. However, since the

sender observes the state realizations over time, she has the opportunity to make more profitable

recommendations with greater confidence in their persuasiveness as she obtains more information.

Thus, the sender’s goal is to carefully manage this tradeoff between the confidence in persuasiveness
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and her utility, and achieve low regret against the optimal signaling mechanism with the knowledge

of the state distribution.

The primary theoretical contribution of this work is an efficient algorithm that, with high

probability, makes persuasive recommendations and at the same time achieves vanishing average

regret. The algorithm we propose proceeds by maintaining at each time a set of candidate state

distributions, based on the observed state realizations in the past. The algorithm then chooses a

signaling mechanism that is simultaneously persuasive for each of the candidate distributions and

maximizes the sender’s utility. Due to this aspect of the algorithm, we name it the Robustness

against Ignorance (Rai) algorithm.

By a careful choice of the candidate set of distributions at each time period, we show in Theorem 1

that the Rai algorithm satisfies the β-robustly persuasiveness criterion for β = o(T ), where T is the

horizon length. Furthermore, exploiting the structure of the problem, we show in Proposition 1 that

the Rai algorithm involves solving a polynomially-sized (in number of states and actions) linear

program at each period. Taken together, these results establish our algorithm’s persuasiveness and

its computationally efficiency.

To characterize the regret of the Rai algorithm, we next undertake a brief digression, in Section 4,

into studying the (static) problem of robust persuasion. Specifically, we study a static persuasion

setting with known state distribution, but impose the restriction that the signaling mechanism must

be persuasive for all distributions in the neighborhood of the actual state distribution. For this

problem, we define and analyze a quantity Gap that measures the sender’s cost of robust persuasion.

Formally, Gap(µ,B) captures the loss in the sender’s expected utility (under distribution µ) from

using a signaling mechanism that is persuasive for all distributions in the set B, as opposed to

using one that is persuasive only for the distribution µ. In Proposition 2, we establish that, under

some regularity conditions, the sender’s cost of robust persuasion Gap(µ,B) is at most linear in the

radius of the set B. This is achieved via an explicit construction of a signaling mechanism that is

persuasive for all distributions in B and achieves sender’s utility close to the optimum. Further, we
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provide a matching lower bound in Proposition 3 by carefully crafting a persuasion instance and

using its geometry to prove a linear cost of robust persuasion; this instance thus serves as a lower

bound example for robust persuasion. The characterization of the cost of robust persuasion provides

useful insight about the problem of robust persuasion, which may be of independent interest.

Using this characterization of the cost of robust persuasion, we perform a tight regret analysis

of persuasion under unknown state distribution in Section 5. Our positive result, Theorem 2,

establishes that for any persuasion setting satisfying the aforementioned regularity conditions, the

Rai algorithm achieves O(
√
T logT ) regret with high probability. Furthermore, in Theorem 3, we

provide a matching lower-bound (up to logT terms) for the regret of any algorithm that makes

persuasive recommendations. In addition to the characterization of Gap and the custom persuasion

instance from Propositions 2 and 3, the proofs of these theorems rely on concentration results for

sums of independent random vectors in Banach spaces.

Our results contribute to the work on online learning that seeks to evaluate the value of knowing

the underlying distributional parameters in settings with repeated interactions (Kleinberg and

Leighton 2003). In particular, our results fully characterize the sender’s value of knowing the state

distribution for repeated persuasion. Our well-motivated approach to relax the strong assumption

of complete distributional knowledge in the standard persuasion setting is also aligned with the

prior-independent mechanism design literature (Dhangwatnotai et al. 2015, Chawla et al. 2013).

1.4. Literature Survey

Our paper contributes to the burgeoning literature on Bayesian persuasion and information design in

economics, operations research and computer science. We refer readers to (Kamenica and Gentzkow

2011, Bergemann and Morris 2019) as well as (Candogan 2020) for a general overview of the recent

developments and (Dughmi 2017) for a survey from algorithmic perspective.

Online learning & mechanism design. Our work subscribes to the recent line of work that

studies the interplay of learning and mechanism design in incomplete-information settings, in the

absence of common knowledge on the prior. We briefly discuss the ones closely related to our work.
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Castiglioni et al. (2020) focus on persuasion setting with a commonly known prior distribution

of the state but unknown receiver types chosen adversarially from a finite set. They show that

effective learning, in this case, is computationally intractable but does admit O(
√
T ) regret learning

algorithm, after relaxing the computability constraint. Our model complements theirs by focusing

on known receiver types but unknown state distributions in a stochastic setup. Moreover, we achieve

a similar (and tight) regret bound through a computationally efficient algorithm. Also relevant

to us is the recent line of work on Bayesian exploration (Kremer et al. 2014, Mansour et al. 2015,

2016) which is also motivated by online recommendation systems. In contrast to our setting, these

models assume the prior is commonly known but the realized state is unobservable and thus needs

to be learned during the repeated interactions.

Dispensing with the common prior itself, Camara et al. (2020) study an adversarial online learning

model where both a mechanism designer and the agent learn about the states over time. The agent

is long-lived and is assumed to minimize her counterfactual (internal) regret in response to the

mechanism designer’s policy, which is assumed to be non-responsive to the agent’s actions. The

authors use a reinforcement learning approach to mechanism design and characterize the policy

regret of the mechanism designer, taking into account the agents’ responses, relative to the best-in-

hindsight fixed mechanism. Similar to our work, the regret bounds require the characterization of a

“cost of robustness” of the underlying design problem. While related, the receivers in our model

are short-lived and myopic. Furthermore, our model is stochastic rather than adversarial, and thus

a prior exists in our model. More broadly, our model is similar in spirit to the prior-independent

mechanism design literature (Dhangwatnotai et al. 2015, Chawla et al. 2013), though our setup

is different. Moreover, our algorithm is measured by the regret whereas approximation ratios are

often adopted for prior-independent mechanism design.

Recent works by Hahn et al. (2019, 2020) study information design in online optimization problems

such as the secretary problem (Hahn et al. 2019) and the prophet inequalities (Hahn et al. 2020),

and propose constant-approximation persuasive schemes. These online optimization problems often
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take the adversarial approach, which is different from our stochastic setup and learning-focused

tasks. Therefore, our results are not comparable.

Robust persuasion: The algorithm we propose relies crucially on robust persuasion due to the

ignorance of the prior, and as a part of establishing the regret bounds for the algorithm, we quantify

the sender’s cost of robustness. Kosterina (2018) studies a persuasion setting in the absence of

the common prior assumption. In particular, the sender has a known prior, whereas only the set

in which the receiver’s prior lies is known to the sender. Furthermore, the sender evaluates the

expected utility under each signaling mechanism with respect to the worst-case prior of the receiver.

Similarly, Hu and Weng (2020) study the problem of sender persuading a privately informed receiver,

where the sender seeks to maximize her expected payoff under the worst-case information of the

receiver. Finally, Dworczak and Pavan (2020) study a related setting and propose a lexicographic

solution concept where the sender first identifies the signaling mechanisms that maximize her

worst-case payoff, and then among them chooses the one that maximizes the expected utility under

her conjectured prior. In contrast to these work, our model focuses on a setting with common,

but unknown, prior, and where the receiver has no private information. Instead, our notion of

robustness is with respect to this unknown (common) prior.

Safe online learning: Our work also relates to safe online learning. The work by Moradipari

et al. (2021) is the most relevant to our work. They study a safe online learning problem where the

linear reward and a single linear constraint depend on different unknown parameters. The learner

has access to both the reward and the side information about the safety set. In this setting, they

propose an algorithm based on linear Thompson Sampling and achieve the regret O(
√
T log3 T ).

The key difference is that their analysis relies on the assumption that a known safe action is an

interior point of the safety set for all possible values of the unknown parameter. Under our regularity

conditions, it is true that for every distribution there exists a signaling mechanism for which all

the persuasiveness constraints hold strictly (that is, the order of the quantifiers from above is

interchanged). However, it is unclear if this weaker assumption would be sufficient for their setting.
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Amani et al. (2019) study a linear stochastic multi-armed bandit problem where the linear

reward function and a single linear safety constraint depend on an unknown parameter. Their main

algorithm and its analysis depend on knowing (a lower bound on) the safety gap, i.e., the slack in

the safety constraint for the optimal solution under the true parameter. When the safety gap is

known and positive (i.e., the constraint is inactive), they prove a regret of O(logT
√
T ). On the

other hand, if the safety gap is known to be zero, they only achieve a regret of Õ(T 2/3). They

provide a separate algorithm for the case of an unknown safety gap and state a regret bound of

Õ(T 2/3). In our setting, there are multiple persuasiveness constraints, and many of these would be

active for the true distribution in nontrivial settings. Thus even if their work can be extended to

multiple constraints, it may only guarantee Õ(T 2/3) regret bound.

Usmanova et al. (2019) seek to minimize a smooth convex function over a set of uncertain linear

constraints where both the coefficients and constant parameters are unknown. Although our problem

is a specific case of theirs, our model does not meet their central assumption of being able to

evaluate the constraints at any point within a small neighborhood of the feasible set.

Recent works by (Pacchiano et al. 2021, Khezeli and Bitar 2020, Moradipari et al. 2020, 2021)

study a similar safe learning problem in different contexts. Pacchiano et al. (2021) require that at

each time, the chosen action has an expected cost below a certain threshold. Khezeli and Bitar

(2020), Moradipari et al. (2020) study safe learning where in addition to maximizing the expected

reward, one requires the reward to be above a threshold with high probability. In these settings,

the objective and the constraint are aligned. Our setup is different because the sender’s and the

receivers’ preferences, corresponding respectively to the objective and constraints, need not be

aligned with each other. Most importantly, all these work impose a single constraint at each round,

whereas our persuasiveness condition requires multiple constraints at each round.

Online linear/convex optimization: Since the persuasion problem can be posed as a linear

program, our work also relates to the online convex optimization problem. Mostly, the focus here

is on adversarial setting where the loss function (objective) is adversarially chosen and revealed
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at the end of each time period. Some papers (Cao et al. 2019, Mahdavi et al. 2013) focus on the

stochastic setting, but either study an unconstrained problem (Cao et al. 2019) or study a batch

algorithm rather than an online algorithm (Mahdavi et al. 2013). Focusing on the constraints, and

using the terminology of (Kim and Lee 2023), these work typically consider either a long-term

constraint formulation (Yu et al. 2017, Mahdavi et al. 2011, Neely and Yu 2017, Yi et al. 2021,

Kim and Lee 2023, Cao and Liu 2018), or consider a cumulative constraint formulation (Yuan and

Lamperski 2018, Yi et al. 2022, Guo et al. 2022). The long-term constraint formulation requires

feasibility on average in the long run. Such constraints are reasonable in applications where the

constraints are on aggregate quantities, such as budgets in online advertising (Liakopoulos et al.

2019), covering constraints in sensor networks, capacity constraints in online routing (Agrawal and

Devanur 2014), etc. However, this type of constraint is not reasonable in our setting as it would

permit the sender to make poor recommendations in some rounds as long as it can be compensated

by good recommendations in other rounds. In contrast, the cumulative constraint formulation

focuses on bounding the sum of the positive-parts of the constraints (which require some quantity

to be non-positive). This formulation is equivalent to our formulation if the cumulative constraint

can be made zero. However, most previous work allow for some constraint violation and seek to

bound the order of the violations. In the presence of such violations, our formulation is stronger.

Finally, by characterizing the persuasion problem as a Stackelberg game between the sender’s

choice of a signaling mechanism and the receiver’s subsequent choice of an action, our work is related

to the broader work on the characterization of regret in repeated Stackelberg settings (Balcan et al.

2015, Dong et al. 2018, Chen et al. 2020).

2. Model

Consider a persuasion setting with a single long-run sender persuading a stream of homogeneous

receivers who arrive sequentially over a time horizon of length T . At each time t∈ [T ] = {0, · · · , T −1},

a state ωt ∈Ω is drawn independently and identically from a state distribution µ∗ ∈∆(Ω). (Here,

for any finite set X, ∆(X) denotes the set of all probability distributions over X.) We focus on
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the setting where Ω is a known finite set, however the distribution µ∗ is unknown to both the

sender and the receivers. To capture the sender’s initial knowledge (before time t=0) about the

distribution µ∗, we assume that the sender knows that µ∗ lies in the set B0 ⊆∆(Ω).

At each time t ∈ [T ], the sender observes the realized state ωt, and shares with the arriving

receiver an action recommendation at ∈A (chosen according to a signaling algorithm, as described

below), where A is a finite set of actions available to the receivers. The receiver then chooses an

action ât ∈A (not necessarily equal to at). This results in the receiver obtaining a utility u(ωt, ât)

and the sender obtaining a utility v(ωt, ât). Without loss of generality, we assume that v(ω,a)∈ [0,1]

for all ω ∈Ω and a∈A. Further, to avoid trivialities, we assume |Ω| ≥ 2 and |A| ≥ 2. We refer to the

tuple I = (Ω,A,u, v,B0) with u : Ω×A→R and v : Ω×A→ [0,1] as an instance of our problem.

Before we proceed, we make few remarks on the persuasion instance. First, the preceding

description does not specify a model of the receivers’ actions ât. As we discuss below in Section 2.2,

this issue is intertwined with the persuasiveness constraints that we impose on the sender’s signaling

algorithm, and hence, we postpone the discussion until then. Second and relatedly, while we have

assumed that that sender shares information in the form of actions recommendations, under the

persuasiveness constraints we consider it can be shown that this is without loss of generality. Third,

while our definition of an instance assumes that the receivers are homogeneous, it can be extended

to allow for heterogeneity of receivers’ utility; our results continue to apply in the setting where the

receivers’ types are observable to the sender. Finally, we assume that the sender knows the receivers’

utility. This is justified in the context of our applications of interest, namely online platforms, where

given the scale, the platform may have good estimates about user utility from extensive user-level

data.

Informally, given a persuasion instance I, the sender’s goal is to systematically make action

recommendations such that her long-run total utility is maximized. We now describe the formal

algorithmic aspects of the sender’s goal.

As each time t, the sender chooses an action recommendation at based on the past state realizations,

the past action recommendations as well as the past actions chosen by the receivers. To separate
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the historical information from that about the present, we define the history ht at the beginning of

time t as follows: ht =∪τ<t{(τ,ωτ , aτ , âτ )} (with h0 = ∅), and note that the sender observes (ht, ωt)

prior to making the recommendation at at time t. We also note that, since the receivers do not

know the state distribution µ∗, neither the past actions recommended by the sender nor the past

actions chosen by the receivers carry any information about µ∗ beyond that contained in the state

realizations. Thus, the part of the history that is relevant to the sender consists of only the state

realizations until time t.

A signaling algorithm a ≡ a(I) for the sender specifies, at each time t ∈ [T ] and after any

history ht and state ωt, a probability distribution σa(ht, ωt, ·)∈∆(A) over the set of actions. (We

sometimes drop the superscript a when it is clear from the context.) Specifically, once the state

ωt is realized, the sender draws the action recommendation at independently according to the

distribution σ(ht, ωt, ·)∈∆(A). Thus, the probability that the sender recommends an action a∈A

is given by σ(ht, ωt, a). Implicitly, the notion of a signaling algorithm reflects the assumption that

the sender commits to a mechanism for sending recommendations.

Given an instance I and a signaling algorithm a, the sender’s total (realized) utility is given by

VI(a, T )≜
∑
t∈[T ]

v(ωt, ât).

Thus, to evaluate the performance of a signaling algorithm, we need a model of the receivers’

response subsequent to receiving the action recommendations. Rather than directly specifying such

a response model, we instead model conditions on the signaling algorithm a which result in obedient

responses from the receivers, i.e., which lead each receiver to choose the action recommended:

ât = at. Any such condition on the signaling algorithm a implies a model of receivers’ response, and

the converse can be assumed without loss of generality by invoking incentive compatibility and the

revelation principle. Henceforth, we refer to such a condition as a persuasiveness criterion.

To motivate these persuasiveness criteria on the signaling algorithms, we first discuss the setting

where the sender and the receivers commonly know the state distributions. This setting will also

serve as a benchmark to compare the performance of any signaling algorithm satisfying certain

persuasiveness requirements.
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2.1. Benchmark: Known State Distribution

Consider the setting where the sender and the receivers commonly know the state distribution

µ∗ = µ∈∆(Ω). In this setting, each receiver responds by choosing the action that maximizes her

expected utility under the posterior belief about the state given the action recommendation. In

particular, the sender’s problem decouples across time periods, and standard results (Kamenica

and Gentzkow 2011, Bergemann and Morris 2019, Dughmi and Xu 2021) imply that the sender’s

problem at each period can be formulated as a linear program.

To elaborate, fix a time t∈ [T ] and history ht, and consider the persuasion problem between the

sender and the arriving receiver. Recall that σ(ht, ω, a) denotes the probability with which the sender

recommends action at = a if the realized state is ωt = ω. We refer to σ[ht]≜ (σ(ht, ω, a) : ω ∈Ω, a∈A)

as the signaling mechanism at time t, and drop the dependence on ht if the context is clear. Finally,

let S = {σ : σ(ω, ·)∈∆(A) for each ω ∈Ω} denote the set of all signaling mechanisms.

A signaling mechanism σ ∈ S is persuasive, if conditioned on receiving an action recom-

mendation a ∈ A, it is indeed optimal for the receiver to choose action a. Let a ∈ A be an

action with
∑

ω∈Ω µ(ω)σ(ω,a) > 0. Upon receiving the recommendation a, the receiver’s poste-

rior belief that the realized state is ω is given by Bayes’ rule as µ(ω)σ(ω,a)∑
ω′∈Ω µ(ω′)σ(ω′,a) , and hence∑

ω∈Ω

(
µ(ω)σ(ω,a)∑

ω′∈Ω µ(ω′)σ(ω′,a)

)
u(ω,a′) denotes her expected utility of choosing action a′ ∈A conditioned

on receiving the recommendation a. For the receiver’s expected utility to be maximized from choos-

ing action a, we need
∑

ω∈Ω µ(ω)σ(ω,a) (u(ω,a)−u(ω,a′))≥ 0 for all a′ ∈A. Since the inequality is

trivially satisfied if
∑

ω∈Ω µ(ω)σ(ω,a) = 0, the set of persuasive mechanisms Pers(µ) is given by

Pers(µ)≜

{
σ ∈ S :

∑
ω∈Ω

µ(ω)σ(ω,a) (u(ω,a)−u(ω,a′))≥ 0, for all a,a′ ∈A

}
. (1)

We note that the set Pers(µ) is a convex polytope for all µ∈∆(Ω). Furthermore, the set Pers(µ)

is non-empty, since it always contains the “full-information mechanism” which recommends the

receiver’s optimal action at each state.
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Given a persuasive signaling mechanism σ ∈ Pers(µ), the receiver is incentivized to choose the

recommended action. Assuming ties are broken in favor of the recommended action, the sender’s

expected utility is given by

V (µ,σ)≜
∑
ω∈Ω

∑
a∈A

µ(ω)σ(ω,a)v(ω,a).

Since V (µ,σ) is linear in σ, the problem of selecting an optimal persuasive signaling mechanism is

given by the following linear program:

OPTI(µ)≜max
σ

V (µ,σ), subject to σ ∈ Pers(µ). (2)

Finally, letting σ∗ denote an optimal signaling mechanism to the preceding optimization problem, the

algorithm a that sets σa(ht, ωt, a) = σ∗(ωt, a) after any history ht optimizes the sender’s total expected

utility when the state distribution is known, with total expected utility given by T ·OPTI(µ).

2.2. Persuasiveness Criterion: Unknown Distribution

We now return to the setting with unknown state distribution, and discuss refined persuasiveness

conditions on the signaling algorithm under which the receivers’ response can be reasonably assumed

to equal the recommendation. In particular, we propose and motivate a condition on the signaling

algorithm, namely the robust persuasiveness criterion as described in Definition 2, and provide

detailed justification supporting the notion.

We begin with the simplest criterion inspired from the known distribution setting. As the sender

observes the past state realizations, the empirical distribution γt, with γt(ω)≜ 1
t

∑
τ<t I{ωτ = ω},

provides an estimate for the unknown distribution µ∗. A natural first idea, which we call the naive

criterion, simply requires the algorithm to act as if this estimate is exact:

Definition 1. A signaling algorithm a satisfies the naive criterion if each σa[ht] is persuasive

under the empirical distribution at time t, i.e., σa[ht]∈ Pers(γt) for all t∈ [T ].

The naive criterion can be motivated through a particular behavioral model of the receivers

involving social learning. Specifically, consider a platform setting where each receiver (i.e., a user)
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arrives with an uninformative Haldane prior (Haldane 1948, Villegas 1977, Jaynes 2003) over the

state distribution µ∗, and observes all the past state realizations. The latter holds if we assume

there is social learning among the receivers, where each receiver leaves a feedback that is read by

all subsequent receivers. Then, at each time t the corresponding receiver’s belief about the state

would be exactly the empirical distribution γt, and thus the receiver would optimally accept the

recommendation made by the platform if it uses a signaling algorithm satisfying the naive criterion.

However, from a practical perspective, the preceding model makes very restrictive assumptions.

First, in a platform setting, the users’ prior belief over µ∗, if such a prior exists at all, is unlikely to be

known to the platform, and need not be same across different users (let alone be the uninformative

Haldane prior). Second, even with social learning, the users typically would not observe all the past

state realizations (or even just the empirical distribution); this is because not all users leave reviews

in a platform, and a user would typically read only a subset of available reviews. Thus, under a

realistic model of social learning, the receivers’ belief about the state would be in general different

from the empirical distribution.

In addition to relying on restrictive behavioral assumptions, there are other deficiencies with

the naive criterion that render it ill-suited as a criterion for ensuring persuasiveness. First, the

naive criterion is especially weak in the initial stages of persuasion due to the lack of sufficient data;

at these initial stages, the constraint based on the empirical distribution may not constrain the

sender’s recommendations. For instance, if the empirical distribution at the beginning happens to

be skewed and concentrates on very few states, then the naive criterion imposes no restriction on

the action recommendations at any previously unseen state since it has zero empirical probability.

Second, an algorithm satisfying the naive criterion may still make inconsistent recommendations

across time. That is, for such an algorithm, there may not exist a single belief µ for which the

recommendations as a whole are persuasive, i.e., σa[ht]∈ Pers(µ) for all t. Any such belief µ, if it

exists, provides a justification for the signaling algorithm, and larger the set of such beliefs the

stronger is the justification. For instance, the “full-information” signaling algorithm Full, which
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always recommends the receivers’ best action at ∈ argmaxa∈A u(ωt, a) after any history ht, has the

strongest justification since all beliefs µ∈∆(Ω) satisfy σFull[ht]∈ Pers(µ). On the other hand, one

can easily construct examples where an algorithm satisfying naive criterion fails to have even a

single belief justifying it, due to inconsistencies in recommendations across different periods.

Summarizing, the primary reason for the weaknesses of the naive criterion is its reliance on the

point estimate γt in the place of receivers’ inherently uncertain beliefs about the state. Even for

basic inferential tasks, such point estimates are seldom sufficient. Without explicitly incorporating

this uncertainty into its conditions, an algorithm would provide no confidence that the receivers

will accept and act according to the recommendations. To remedy these weaknesses, we propose

the following criterion that embraces the notion of robustness in its conditions.

Definition 2. Given β ≥ 0, a signaling algorithm a is β-robustly persuasive, if there exists (history-

dependent) sets Ct ⊆B0 for all time t, such that

1. Robustness: The signaling mechanism σa[ht] is persuasive for all beliefs in the set Ct: for

each t∈ [T ], we have

σa[ht]∈ Pers(Ct)≜∩µ∈CtPers(µ).

2. Coverage: The sets Ct all contain the true state distribution µ∗ with high probability:

Pµ∗
(
∩t∈[T ]Ct ∋ µ∗)≥ 1−β.

(Here, Pµ∗ represents the probability with respect to the (unknown) distribution µ∗ and any

independent randomization in the algorithm.)

The first condition in the criterion enforces robustness, requiring that the signaling mechanism at

time t, σa[ht], is persuasive with respect to all beliefs in the set Ct. These sets implicitly capture

the uncertainties regarding the receivers’ beliefs, and by depending on the history, reflect any

learning occurring over time. (We note that the set Pers(Ct) is indeed non-empty, as it contains the

“full-information” mechanism.) The second condition in the criterion requires these sets to have

good coverage properties, i.e., these sets contain the state distribution µ∗ with high probability.
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To further motivate the criterion, we delve a bit into the perspective of social learning in a platform

setting mentioned earlier. Here, while it is a strong assumption to require the receivers to know the

exact empirical distribution, it is fair to assume that the receivers observe (summary statistics about)

a sizeable proportion of past state realization. In particular, many common empirical principles,

such as the “90-9-1 rule” (Antelmi et al. 2019, Van Mierlo et al. 2014), posit that a constant

fraction of the users leave feedback in the platform. In this context, a receiver who starts with some

sufficiently diffuse prior over µ∗, and who learns from past (incomplete) feedback, will have a belief

about the state that is close enough to the empirical distribution. Thus, a signaling algorithm that

makes recommendations that are persuasive for all beliefs close to the empirical distribution would

ensure that such a receiver would find it optimal to follow the recommended action. Our proposed

criterion, by using a robustness approach, abstracts away from the details of such an explicit model,

and captures the receivers’ response through the uncertainty sets Ct.

Observe that as long as the sets Ct contain the empirical distribution γt, the preceding criterion is

stronger than the naive criterion. More importantly, in addition to capturing more realistic models

of social learning, the coverage and the robustness conditions together also overcome the other

inadequacies of the naive criterion that we discussed above. To see this, note that, at the initial stages

t when the data is insufficient, good coverage requires the set Ct to be large, and thus the action

recommendations are severely constrained (even at the states that have not been realized), unlike the

case with the naive criterion. Similarly, the robustness ensures that any belief µ∈∩t∈[T ]Ct provides a

justification for the signaling algorithm, thus precluding any inconsistencies across time. In particular,

with probability at least 1−β, the true state distribution µ∗ justifies all the recommendations made

by a β-robustly persuasive signaling algorithm: Pµ∗ (σa[ht]∈ Pers(µ∗) for all t∈ [T ])≥ 1−β.

The parameter β in the criterion plays the same role as that played by significance level in

inference. In particular, low values of β correspond to high level of confidence in the uncertainty

sets Ct. Finally, it is easy to see that β-robustly persuasive algorithms exist for any β ≥ 0; in fact,

choosing the sets Ct =B0 for all t∈ [T ], it follows that the algorithm Full is 0-robustly persuasive.
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Given the preceding discussion, we hereafter assume that for any signaling algorithm a that

is β-robustly persuasive for some (small) β ≥ 0, the receivers’ response ât equals the action

recommendation at at each time t. Thus, for any such algorithm a, the sender’s total utility reduces

to VI(a, T ) =
∑

t∈[T ] v(ωt, at).

2.3. Sender’s Learning Problem

Finally, we describe the evaluation metric for the performance of any algorithm satisfying the

preceding persuasiveness criterion by comparing the sender’s utility VI(a, T ) against the known-

distribution benchmark given by T ·OPT(µ∗). Specifically, we measure the sender’s regret from

using a β-robustly persuasive algorithm a by

RegI(a, T,µ
∗)≜ T ·OPTI(µ

∗)−VI(a, T ) = T ·OPTI(µ
∗)−

∑
t∈[T ]

v(ωt, at). (3)

We are now ready to formalize the sender’s learning problem. Begin by noticing that one must

require the signaling algorithm a to be β-robustly persuasive for some small β in order for the

second equality above to hold, i.e., for the receivers’ responses to match the recommendations. At

the same time, 0-robustly persuasiveness is an excessive requirement, with no hope of resulting

in a sub-linear regret. (In Appendix A.2, we present an example instance where any 0-robustly

persuasive algorithm necessarily obtains a linear regret.) Thus, the central problem is to design,

for any given instance I, an algorithm a that is β-robustly persuasive for small (vanishing) β and

simultaneously achieves sublinear regret with high probability.

3. The Robustness Against Ignorance (Rai) Algorithm

Having described the learning problem faced by the sender, in this section, we present a signaling

algorithm that we call the Robustness Against Ignorance (Rai) algorithm. Here, we show that the

Rai algorithm is β-robustly persuasive with β = o(1), relegating the regret analysis to Section 5.

Before describing our proposed algorithm, we briefly motivate our design approach. Observe that

if the state distribution µ∗ is known, then the sender’s problem is given by the linear program (2),

and thus the optimal signaling mechanism can be efficiently computed. Thus, a natural learning
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approach is to solve at each time t the estimated version of the LP (2), where the unknown

distribution µ∗ is replaced by the empirical distribution γt, and use the corresponding optimal

signaling mechanism for that time period. However, this alone is not sufficient to obtain an algorithm

that is β-robustly persuasive, which requires the signaling mechanisms to be persuasive for all

distributions in some small neighborhood of µ∗. To elaborate, simply solving the estimated LP may

yield solutions that are only ϵ-feasible for distributions close to the empirical distribution, i.e., some

of the persuasiveness constraints for such nearby distributions may get violated. In fact, optimizing

the estimated LP may result in a mechanism that is not persuasive for any other distribution

close to the empirical distribution. Thus, an immediate challenge is in determining how to use the

empirical distribution estimate to find well-performing signaling mechanisms that are persuasive

(with high probability) for all distributions in a small neighborhood around the unknown state

distribution. Part of this challenge is to carefully choose the corresponding neighborhoods without

significantly sacrificing the performance of the mechanism.

The algorithm we propose is adaptive. An alternative is to adopt an “explore-then-commit”

design (Lattimore and Szepesvári 2020), where the algorithm uses the state realizations in the

first t periods (for some carefully chosen t) to estimate the unknown distribution and subsequently

commits to a single signaling mechanism for the remaining time periods. However, it is unlikely

that such a algorithmic design can achieve strong regret guarantees in our setting, since it is

known that such an approach yields the sub-optimal O(T 2/3) regret in simple multi-armed bandit

problems (Lattimore and Szepesvári 2020). This observation illustrates the need for adaptivity to

obtain order-wise optimal regret.

To meet these challenges, our algorithm Rai proceeds by adaptively maintaining, at each time

t≥ 0, a set Bt of candidates for the (unknown) distribution µ∗. This set is a (closed) ℓ1-ball of

radius ϵt at the empirical distribution γt. It then selects a signaling mechanism that maximizes

the sender expected utility w.r.t. the empirical estimate γt among mechanisms that are persuasive

for all distributions µ ∈ Bt. Finally, it makes an action recommendation at using this signaling
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ALGORITHM 1: The Robustness Against Ignorance (Rai) algorithm

Input: Instance I, Time horizon T

Parameters: γ0 ∈B0, {ϵt > 0 : t∈ [T ]}

Output: at ∈A for each t∈ [T ]

for t= 0 to T − 1 do

Choose any σ[ht]∈ argmaxσ{V (γt, σ) : σ ∈ Pers(Bt)};

Recommend at = a∈A with probability σ(ωt, a;ht);

Update γt+1(ω)← 1
t+1

∑t

τ=0 I{ωτ = ω} for each ω ∈Ω;

Set Bt+1←B1(γt+1, ϵt+1);

end

mechanism, given the state realization ωt. The Rai algorithm is formally described in Algorithm 1.

Here, we use the notation Pers(B) to denote the set of signaling mechanisms that are simultaneously

persuasive under all distributions µ in the set B ⊆∆(Ω): Pers(B) =∩µ∈BPers(µ). We remark that

for any non-empty set B ⊆∆(Ω), the set Pers(B) is convex since it is an intersection of convex sets

Pers(µ), and is non-empty since it contains the full-information signaling mechanism. Furthermore,

we let B1(µ, ϵ)≜ {µ′ ∈∆(Ω) : ∥µ′−µ∥1 ≤ ϵ} denote the (closed) ℓ1-ball of radius ϵ > 0 at µ∈∆(Ω).

From the intuitive description, it follows that the sets Bt = B1(γt, ϵt) naturally play the role

of the covering sets Ct in the definition of β-robustly persuasiveness. Specifically, the parameters

{ϵt : t ∈ [T ]} control the degree of persuasiveness of the algorithm: larger values of ϵt imply that

the algorithm is β-robustly persuasive for smaller values of β. (In particular, if all ϵt are larger

than 2, the algorithm reduces to the full-information algorithm Full, and is 0-robustly persuasive.)

Unsurprisingly, larger values of ϵt also lead to larger regret, and hence the sender must choose ϵt to

optimally trade-off the persuasiveness of the algorithm against its regret.

Our first main result characterizes Rai’s persuasiveness for a particular choice of parameter values

which we show in Section 5 to be regret-optimal.
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Theorem 1. For each t∈ [T ], let ϵt =min{
√

|Ω|
t

(
1+
√
ΦlogT

)
,2} with Φ> 0. Then, the Rai algo-

rithm is β-robustly persuasive with

β = sup
µ∗∈B0

Pµ∗
(
∩t∈[T ]Bt ̸∋ µ∗)≤ T 1− 3Φ

√
Ω

56 .

In particular, for Φ> 20, we have β ≤ T−0.5.

The proof of the persuasiveness of Rai follows by showing that the empirical distribution γt

concentrates around the unknown state distribution µ∗ with high probability. Since, after any

history ht, the signaling mechanism σ[ht] chosen by the algorithm is persuasive for all distributions

in an ℓ1-ball around γt, we deduce that it is persuasive under µ∗ as well. To show the concentration

result, we use a concentration inequality for independent random vectors in a Banach space (Foucart

and Rauhut 2013); the full proof is provided in Appendix B.

We observe that to get strong persuasiveness guarantees, the choice of ϵt in the preceding

theorem requires the knowledge of the time horizon T . However, applying the standard doubling

tricks (Besson and Kaufmann 2018), one can convert our algorithm to an anytime version that has

the same regret upper bound guarantee, at the cost of a weakened persuasiveness guarantee, where

the persuasiveness β is weakened to a constant arbitrarily close to 0.

Next, note that the Rai algorithm requires finding at each time t a signaling mechanism that is

persuasive for all distributions in a neighborhood around the empirical distribution. The following

result shows that this is a simple computational task requiring a polynomial running time. Thus,

the result establishes the Rai algorithm’s computational efficiency.

Proposition 1. The Rai algorithm requires solving at each time a linear program with size

polynomial in |Ω| and |A|.

Proof. To see the efficiency of the Rai algorithm, note that at each time t the algorithm has

to solve the optimization problem maxσ{V (γt, σ) : σ ∈ Pers(Bt)}. Since Bt =B1(γt, ϵt) is an ℓ1-ball

of radius ϵt, it is a convex polyhedron with at most |Ω| · (|Ω| − 1) vertices. (These vertices are

all of the form γt +
ϵt
2
(eω − eω′), where eω is the belief that puts all its weight on ω.) By the
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linearity of the obedience constraints and the convexity of Bt, it follows that Pers(Bt) is obtained by

imposing the obedience constraints at priors corresponding to each of these vertices. Since there are

O(|Ω|+ |A|2) obedience constraints for each distribution, we obtain that the optimization problem

is a polynomially-sized linear program, and hence can be solved efficiently. □

Having addressed the persuasiveness and the computational efficiency of the Rai algorithm, we

devote the rest of the paper to analyzing its regret. To do this, we first take a digression to define

(and bound) the cost of robust persuasion in static persuasion problems. Armed with this result,

we then characterize the algorithm’s regret in Section 5.

4. Digression: Cost of Robust Persuasion

In this section, we consider the static persuasion problem with known state distribution (discussed

in Section 2.1), and study the loss in the sender’s expected utility from requiring the signaling

mechanism to be persuasive for all distributions in a neighborhood around the state distribution.

To measure this loss, we first define the notion of the cost of robust persuasion, a quantity that

depends on the neighborhood, and provide upper and lower bounds under some minor regularity

conditions.

Fix a persuasion instance I. In the static setting with known state distribution µ, the sender’s

optimal expected payoff is given by OPTI(µ) = supσ∈Pers(µ) V (µ,σ). Next, for any set of distributions

B ⊆B0, the set of signaling mechanisms that are simultaneously persuasive for all distributions in

B is given by Pers(B) =∩µ′∈BPers(µ
′). Hence, the sender’s optimal expected utility among all such

mechanisms is given by supσ∈Pers(B) V (µ,σ). Thus, we define the cost of robust persuasion as

Gap(µ,B)≜ sup
σ∈Pers(µ)

V (µ,σ)− sup
σ∈Pers(B)

V (µ,σ). (4)

Thus, Gap(µ,B) captures the difference in the sender’s expected utility (under µ) between using

the optimal persuasive signaling mechanism for the distribution µ and using the optimal signaling

mechanism that is persuasive for all distributions µ′ ∈B.

For general persuasion instances, one can show that the cost of robust persuasion can be severe:

in Appendix A.1, we present a persuasion instance and a distribution µ such that for any ϵ > 0, the
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cost of being robustly persuasive for the set B1(µ, ϵ) of distributions satisfies Gap(µ,B1(µ, ϵ)) =
1
2
.

The instance we present there is pathological, with an action that is optimal for the receiver at a

single unique distribution. To obtain meaningful insights on the cost of robust persuasion, we seek

to exclude such instances by imposing some regularity condition on the instances.

To state these regularity conditions, we need some notation. For each action a∈A, let Pa denote

the set of state distributions for which action a is optimal for a receiver:

Pa ≜ {µ∈∆(Ω) :Eµ [u(ω,a)]≥Eµ [u(ω,a
′)] , for all a′ ∈A} .

It is without loss of generality to assume that for each a ∈A, the set Pa is non-empty. (This is

because a receiver can never be persuaded to play an action a∈A for which Pa is empty, and hence

such an action can be dropped from A.)

We consider the following regularity conditions on the persuasion instances:

Assumption 1 (Regularity Conditions). The instance I satisfies the following conditions:

1. There exists d> 0 such that for each a∈A, the set Pa contains an ℓ1-ball of size d. Let D> 0

denote the largest value of d for which the preceding is true, and let ηa ∈ Pa be such that

B1(ηa,D)⊆Pa.

2. There exists a p0 > 0 such that for all µ∈B0 we have minω µ(ω)≥ p0 > 0.

The first condition requires that each such set Pa has a non-empty relative interior; this excludes

the pathological instances like that in Appendix A.1, for which there exists an action a with Pa a

singleton. We note that this condition is analogous to the Slater condition in convex optimization,

imposing non-empty interior on the feasibility region to obtain strong duality. The second condition

is technical and is made primarily to ensure the potency of the first condition: without it, the

sets {Pa}a∈A may satisfy the first condition in ∆(Ω), while failing to satisfy it relative to the

subset ∆({ω : µ(ω) > 0}) for some µ ∈ B0. Taken together, these regularity conditions serve to

avoid pathologies, and henceforth we restrict our attention only to those instances satisfying these

regularity conditions.

Under the regularity conditions, our first result shows that the cost of robust persuasion Gap(µ,B)

is at most linear in the size of the set B.
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Proposition 2. For any instance that satisfies the regularity conditions, for all µ∈B0 and for all

ϵ≥ 0, we have Gap(µ,B1(µ, ϵ))≤
(

4
p20D

)
ϵ.

The proof of the upper bound is obtained through an explicit construction of a signaling mechanism

σ̂ that is persuasive for all distributions in the set B1(µ, ϵ), and by showing that the sender’s

expected payoff under σ̂ is close to that under the optimal signaling mechanism in Pers(µ). For this

construction, we first use the geometry of the instance to split the distribution µ into a convex

combination of distributions that either fully reveal the state, or are well-situated in the interior of

the sets Pa. (It is here that we make use of the two regularity assumptions.) We then construct the

mechanism σ̂ to induce, under prior µ, the aforementioned beliefs as posteriors. Finally, we show that

for any prior µ′ close enough to µ, the posteriors induced by σ̂ are close to the posteriors induced

under prior µ, implying that these posteriors lie within the sets Pa. This proves the persuasiveness

of σ̂ for all distributions µ′ close to µ. We provide the complete proof in Appendix C.

Next, we provide a (worst-case) lower bound on Gap. We accomplish this by carefully constructing

a persuasion instance I0 where being robustly persuasive leads to a substantial loss to the sender.

The instance I0 has three states Ω = {ω0, ω1, ω2} and five actions A = {a0, a1, a2, a3, a4} for the

receiver. At a high level, the receiver’s preference can be illustrated as in Fig. 1a, which depicts

the receiver’s optimal action for any belief in the simplex. The regions Pi in the figure correspond

to the set of beliefs that induce action ai ∈ A as the receiver’s best response. The instance is

crafted so that the sets P1 and P2 that induce actions a1 and a2 respectively are symmetric and

extremely narrow with the width controlled by an ℓ1-ball of radius D contained within, as depicted

in Fig. 1b. (Since |Ω|= 3, the ℓ1-ball here is a hexagon.) For completeness, the receiver’s utility is

listed explicitly in Table 1. The sender seeks to persuade the receiver into choosing one of actions a1

and a2 (regardless of the state); all other actions are strictly worse for the sender. Formally, we set

v(ω,a) = 1 if a∈ {a1, a2} and 0 otherwise, for all ω. The sender’s initial knowledge regarding the

state distribution is captured by the set B0 = {µ ∈∆(Ω) : minω µ≥ p0}, while the distribution of

interest is µ∗ = (p0,
1−p0

2
, 1−p0

2
), corresponding to the midpoint of the tips of the sets Pi, as shown in
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(a) Receiver’s preferences (b) Prior µ∗

Figure 1 The persuasion instance I0.

Table 1 Receiver’s utility in instance I0, with u(ω,a0) normalized to 0 for all ω ∈Ω.

a1 a2 a3 a4

ω0 2D2 2D2 −2D(1− p0 − 2D) −2D(1− p0 − 2D)

ω1 (1− 2D)(1−D)− p0 (D+1)(2D− 1)+ p0 2(1− p0 − 2D)(1−D) −2(1− p0 − 2D)(D+1)

ω2 (D+1)(2D− 1)+ p0 (1− 2D)(1−D)− p0 −2(1− p0 − 2D)(D+1) 2(1− p0 − 2D)(1−D)

Fig. 1b. We focus on the setting where the instance parameters D and p0 satisfy Dp0 < 1/64. The

following proposition shows that in the instance I0, it is costly to require the signaling mechanism

to be robustly persuasive for a set of distributions around µ∗. The result also implies that the

bound on Gap(·) obtained in Proposition 2 is almost tight, except for a factor of 1/p0.

Proposition 3. For the instance I0, we have OPT(µ∗) = 1. Furthermore, for all ϵ ∈ (0,D), we

have

Gap(µ∗,{µ∗, µ̄1, µ̄2})≥
ϵ

8Dp0
,

where µ̄1 = µ∗ + ϵ
2
(e1− e2), µ̄2 = µ∗ + ϵ

2
(e2− e1), where the belief ei puts all its weight on ωi.

We defer the rigorous algebraic proof of the lower bound to Appendix C and present a brief sketch

using a geometric argument here. In the instance I0, the distribution µ∗ can be written as a convex

combination µ∗ = (µ1 +µ2)/2, where µ1 and µ2 are the tips of regions P1 and P2 respectively (see

Fig. 1b). Thus, by the splitting lemma (Aumann et al. 1995), it follows that the optimal signaling

mechanism sends signals that induce posterior beliefs µ1 and µ2 leading to receiver’s choice of a1
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and a2 respectively. Since the sender can always persuade the receiver to choose one of her preferred

actions, we obtain OPT(µ∗) = 1. On the other hand, for a signaling mechanism to be robustly

persuasive for all distributions ϵ-close to the distribution µ∗ for sufficiently small ϵ, the posteriors

for the sender’s preferred actions a1, a2 induced by the signaling mechanism have to be shifted up

significantly in the narrow region. Such a large discrepancy ultimately forces the sender to suffer a

substantial loss in the expected payoff.

5. Regret Analysis

We now return to the regret analysis of the online persuasion setting. The regret bounds we establish

in this section make critical use of the characterization of the cost of robust persuasion from the

preceding section.

Our main result establishes a upper bound on the regret of the Rai algorithm in instances

satisfying the regularity conditions. While p0 appears in our regret bound, it is not required by the

Rai algorithm for its operation.

Theorem 2. Suppose the instance I satisfies the regularity condition. For t ∈ [T ], let ϵt =

min{
√

|Ω|
t
(1+
√
ΦlogT ),2} with Φ> 0. Then, for all µ∗ ∈B0, with probability at least 1−T 1− 3Φ

√
Ω

56 −

T−8Φ|Ω|, the Rai algorithm satisfies

RegI(Rai, µ∗, T )≤ 2

(
20

p20D
+1

)(
1+

√
|Ω|T (1+2

√
ΦlogT )

)
.

In particular, the regret is of order O
( √

Ω
p20D

√
T logT

)
with high probability.

The central step in the proof is the following decomposition of the regret, established in Lemma 2

in Appendix D.1:

RegI(Rai, µ∗, T )≤
∑
t∈[T ]

Gap(µ∗,B1(µ
∗,∥µ∗− γt∥1))+

∑
t∈[T ]

Gap(γt,B1(γt, ϵt))

+
∑
t∈[T ]

∥µ∗− γt∥1 +
∑
t∈[T ]

(Eµ∗ [v(ωt, at)|ht]− v(ωt, at)) .

Observe that on the event {µ∗ ∈∩t∈[T ]Bt}, we have ∥µ∗− γt∥1 ≤ ϵt. Thus, on this event, the first two

terms on the right-hand side of the preceding inequality capture the cost of persuading robustly for



28 Zu, Iyer, and Xu: Learning to Persuade on the Fly

all distributions in an ℓ1-ball of radius ϵt around the distribution µ∗ and its estimate γt. Moreover,

the third term represents the estimation error between µ∗ and γt. Together with Proposition 2, we

thus obtain that the first three terms are of order
∑

t∈[T ] ϵt =O(
√
T logT ). Finally, the last term,

which captures the randomness in the sender’s payoff, is also of the same order due to a simple

application of the Azuma-Hoeffding inequality. The details are provided in Appendix D.1.

5.1. Lower bound

In this section, we show that our regret upper bound in Theorem 2 is essentially tight with respect to

the parameters D,T (up to a lower order
√
logT factor). We also show that the inverse polynomial

dependence on p0, the smallest probability of states, is necessary though the exact order of the

dependence on p0 is left as an interesting open question.

Theorem 3. For the instance I0 and distribution µ∗ ∈B0 considered in Proposition 3, there exists

a T0 > 0 such that for any T ≥ T0 and any βT -robustly persuasive algorithm a the following holds

with probability at least 1
3
− 2βT :

RegI(a, T,µ
∗) = T ·OPT(µ∗)−

∑
t∈[T ]

v(ωt, at)≥
√
T

32Dp0
.

We provide a sketch here. First the regret can be split into two terms:

RegI(a, T,µ
∗) = T ·OPT(µ∗)−

∑
t∈[T ]

V (µ∗, σa[ht])+
∑
t∈[T ]

V (µ∗, σa[ht])−
∑
t∈[T ]

v(ωt, at)

Let ET (µ) be the event under which the signaling mechanism σa[ht] chosen by the algorithm a

after any history ht ∈ ET (µ) is persuasive for the distribution µ. Hence on the event ET (µ∗)∩ET (µ̄1)∩

ET (µ̄2), the signaling mechanism σa[ht] is persuasive for all three distributions µ
∗, µ̄1 = µ∗+ ϵ

2
(e1−e2)

and µ̄2 = µ∗ + ϵ
2
(e2 − e1). From Proposition 3, we have that on this event, the first term, which

is the sender’s expected loss, is no less than T ·Gap(µ∗,{µ∗, µ̄1, µ̄2}). We lower bound the second

term using the Azuma-Hoeffding inequality. The remaining step is to show that the probability of

the event ET (µ∗)∩ET (µ̄1)∩ET (µ̄2) does not vanish as T goes to infinity, which follows from robust

persuasiveness of the algorithm a and careful choice of ϵ. The details are provided in Appendix D.2.
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6. Conclusion

We studied a repeated Bayesian persuasion problem where the distribution of payoff-relevant states

is unknown to the sender. The sender learns this distribution from observing state realizations while

making recommendations to the receiver. We propose the Rai algorithm which persuades robustly

and achieves O(
√
T logT ) regret against the optimal signaling mechanism under the knowledge of

the state distribution. To match this upper-bound, we construct a persuasion instance for which

no persuasive algorithm achieves regret better than Ω(
√
T ). Taken together, our work precisely

characterizes the value of knowing the state distribution in repeated persuasion.

While social learning is a strong motivation for our robust persuasiveness criterion, there are other

motivations as well. For instance, a platform concerned about its long-run reputation may want

to design a recommendation algorithm that guarantees verifiably good quality recommendations,

not just with respect to currently available state realization data, but also with respect to any

additional data obtained in the future. An algorithm satisfying our robust persuasiveness criterion

enables such a platform to meet its goals.

While in our analysis we have assumed that the receiver’s utility is fixed across time periods,

our model and the analysis can be easily extended to accommodate heterogeneous receivers, as

long as the sender observes the receiver’s type prior to making the recommendation, and the cost

of robustness Gap can be uniformly bounded across different receiver types. More interesting is

the setting where the sender must persuade a receiver with an unknown type. In such a setting,

assuming the sender cannot elicit the receiver’s type prior to making the recommendation, the

sender makes a menu of action recommendations (one for each receiver type). It can be shown

the complete information problem in this setting corresponds to public persuasion of a group of

receivers with no externality, which is known to be a computationally hard linear program with

exponentially many constraints (Dughmi and Xu 2017). Consequently, our algorithm ceases to be

computationally efficient. Nevertheless, our results imply that the algorithm continues to maintain

the O(
√
T logT ) regret bound.
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Our characterization of the cost of robust persuasion may be of independent interest. For instance,

one can derive the sample complexity bounds for static persuasion problem when the sender only

has access to the samples from the underlying distribution. To obtain a signaling mechanism that

is persuasive with probability at least 1−β and is ϵ-optimal, our characterization yields a sample

complexity of Θ( |Ω|+log(1/β)

p40D
2ϵ2

). Note that for large enough ϵ, one can simply use the full-information

mechanism with no need for any samples.

Our analysis highlights two main technical contributions. One is the characterization of the cost

of robust persuasion for the underlying linear program and using this characterization to perform a

tight regret analysis for the online learning problem. The former result heavily uses the specifics

of the persuasion problem (for instance, the use of the splitting lemma to construct a feasible

robust solution) whereas the latter result is more agnostic to the setting. Given this, we believe

our approach can be extended to other online linear programming settings as long as one can

obtain a characterization of the corresponding cost of robustness. Note that even in our persuasion

setting, we had to impose the regularity conditions to obtain the linear bounds on the cost of

robustness, without which the cost could be O(1) and the regret would be linear. Whether these

regularity conditions can be generalized to other linear settings is an interesting question for further

investigation.

Appendix A: Examples of Persuasion Instances

In this section, we provide examples of instances that illuminate various aspects of our theoretical

results.

A.1. Failure of the Regularity Condition

We begin with an example of an instance I1 in which the regularity condition does not hold, and in

which any β-robustly persuasive algorithm incurs a linear regret. We establish this by proving that

in this instance, the cost of robust persuasion Gap(µ∗,B1(µ
∗, ϵ)) is a constant independent of ϵ for

all ϵ > 0.

In the persuasion instance I1, the state space is given by Ω= {ω0, ω1, ω2} and the receiver has

four actions A= {a0, a1, a2, a3}. The receiver’s utility is given by u(ωi, aj) = I{i= j}+ 1
3
I{j = 3} for

i∈ {0,1,2} and j ∈ {0,1,2,3}. The sender’s payoff is given by v(ωi, aj) = I{j = 3}; in other words,

the sender strictly prefers the receiver choosing action a3 over any other action in all states. The



Zu, Iyer, and Xu: Learning to Persuade on the Fly 31

sender’s initial knowledge regarding the underlying state distribution is captured by B0 =B1(µ
∗, ϵ0)

for some ϵ0 > 0, where µ∗ = (1
6
, 2
3
, 1
6
).

The receiver’s preferences can be depicted as in Fig. 2, with sets Pj for j ∈ {0,1,2} denoting the

set of beliefs for which the receiver finds it optimal to choose action aj . On the other hand, the set

of beliefs for which it is optimal for the receiver to choose the sender’s preferred action a3 is given

by P3 = {µ̄} where µ̄= ( 1
3
, 1
3
, 1
3
) (the orange central point in the figure). Since P3 has an empty

interior, the first regularity condition fails for the instance I1.

Figure 2 The persuasion instance I1.

If the distribution µ∗ is known, the sender can use a signaling mechanism that induces µ̄ as

the posterior belief with positive probability, causing the receiver to choose action a3 leading to a

positive payoff for the sender. Formally, under the distribution µ∗ = ( 1
6
, 2
3
, 1
6
), the optimal signaling

mechanism is given by

σ∗(ω1, a3) = 1−σ∗(ω1, a1) =
1

4
,

σ∗(ω0, a3) = σ∗(ω2, a3) = 1,

σ∗(ω,a) = 0, otherwise.

Under this mechanism, the sender’s utility is given by OPT(µ∗) = 1
2
.

However, for any ϵ > 0, the only recommendations that are robustly persuasive for all distributions

in B1(µ
∗, ϵ) are a0, a1, a2. Thus, any signaling mechanism that is persuasive for all distributions in

B1(µ
∗, ϵ) can never recommend the sender’s preferred action a3, leading to the sender’s payoff of

zero. Hence, the difference in the sender’s expected utility between using the optimal persuasive

signaling mechanism for the distribution µ∗ and using the optimal signaling mechanism that is

persuasive for all distributions in B1(µ
∗, ϵ) is given by

Gap(µ∗,B1(µ
∗, ϵ)) = V (µ∗, σ∗)−V (µ∗, σ̂) =

1

2
.
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Thus, Gap(µ∗,B1(µ
∗, ϵ)) is a constant independent of ϵ > 0. Using this bound on the cost of robust

persuasion and an argument similar to the proof of Theorem 3, one can show that the regret of any

β-robustly persuasive mechanism is of order Ω(T ) with probability at least 1/3.

A.2. Linear regret for 0-robustly persuasive mechanisms

In this section, we establish the necessity to consider β-robustly persuasive mechanisms with (small)

β > 0 for obtaining meaningful regret bounds. This is demonstrated by a simple example of the

persuasion instance I2 in which any 0-robustly persuasive algorithm necessarily incurs a linear

regret.

In the persuasion instance I2, the state space is given by Ω= {ω0, ω1} and the receiver’s action

space is given by A= {a0, a1}. The receiver’s utility is given by u(ωi, aj) = I{i= j} for i, j ∈ {0,1},
i.e., the receiver desires to “match” the action with the state. On the other hand, the sender

strictly prefers the receiver choosing action a0 over action a1 in all states, i.e., v(ωi, aj) = I{j = 0}
for all i, j ∈ {0,1}. The sender’s initial knowledge regarding the distribution is captured by B0 =

{( 1
2
−α, 1

2
+α) : α∈ [− 1

4
,+ 1

4
]}.

For each i ∈ {0,1}, the set of beliefs for which it is optimal for the receiver to choose action

ai is given by Pi where P0 = {(a,1− a) : a∈ [ 1
2
,1]} and P1 = {(a,1− a) : a∈ [0, 1

2
]}. Note that the

persuasion instance I2 satisfies both the regularity conditions.

Now, since all the distributions in B0 are absolutely continuous with respect to each other, any

algorithm a that is 0-robustly persuasive must select at each time t∈ [T ] a signaling mechanism

σt in the set Pers(B0). However, it is straightforward to verify that among all mechanisms that

are persuasive for all distributions in B0, the one that maximizes sender’s payoff is given by

σ̂(ω0, a0) = 1− σ̂(ω0, a1) = 1, σ̂(ω1, a0) = 1− σ̂(ω1, a1) =
1
3
. For the distribution µ∗ = ( 1

2
, 1
2
)∈P0 ∩B0,

it follows that the sender’s payoff under σ̂ is V (µ∗, σ̂) = 2
3
.

On the other hand, since µ∗ ∈P0 ∩B0, the signaling mechanism that recommends action a0 in

both states is persuasive for µ∗, and thus achieves an expected payoff of OPT(µ∗) = 1. Thus, we

deduce that for the distribution µ∗, any 0-robustly persuasive algorithm must incur a constant

regret of at least 1
3
at each time leading to an overall regret linear in T .

Appendix B: Proofs from Section 3

This section provides the proof of Theorem 1, along with a helper lemma establishing the concen-

tration of the empirical distribution around the (unknown) distribution.

Proof of Theorem 1. If µ∗ ∈Bt for each t∈ [T ], then since σ[ht] is persuasive under all distribu-

tions in Bt, we deduce that σ[ht] is persuasive under the distribution µ∗ for all t ∈ [T ]. Thus, we
obtain that the Rai-algorithm is β-robustly persuasive for

β = sup
µ∗∈B0

Pµ∗
(
∩t∈[T ]Bt ̸∋ µ∗) .
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Now, for any µ∈B0, using the union bound we get

Pµ

(
∩t∈[T ]Bt ̸∋ µ

)
=Pµ

(
∪t∈[T ]Bc

t ∋ µ
)

≤
∑
t∈[T ]

Pµ (Bc
t ∋ µ)

=
∑
t∈[T ]

Pµ (∥γt−µ∥1 > ϵt)

=
∑
t∈[T ]

Pµ

(
∥γt−µ∥1 >

√
|Ω|
t

(
1+

√
ΦlogT

))
.

For t < 1
4
ΦlogT , we have√

|Ω|
t

(
1+

√
ΦlogT

)
> 2
√
|Ω|
(
1+

1√
ΦlogT

)
≥ 2.

Hence, Pµ

(
∥γt−µ∥1 >

√
|Ω|
t

(
1+
√
ΦlogT

))
= 0. On the other hand, for t≥ 1

4
ΦlogT , we have

√
ΦlogT ≤ 2

√
t, and hence from Lemma 1, we obtain

∑
t≥ 1

4ΦlogT

Pµ

(
∥γt−µ∥1 >

√
|Ω|
t

(
1+

√
ΦlogT

))
≤

∑
t≥ 1

4ΦlogT

exp

(
−3Φ logT

√
Ω

56

)

≤ T− 3Φ
√
Ω

56

(
T − ΦlogT

4

)
≤ T 1− 3Φ

√
Ω

56 .

Setting Φ> 20 implies that the final term is at most T−0.5. □

The following lemma provides a bound on the ℓ1-norm of the deviation of the empirical distribution

from its mean.

Lemma 1. For each t∈ [T ], and for any µ∈∆(Ω), we have for all 0<Φt ≤ 2
√
t,

Pµ

(
∥γt−µ∥1 ≥

√
|Ω|
t

(1+Φt)

)
≤ exp

(
−3Φ2

t

√
Ω

56

)
I

{√
|Ω|
t

(1+Φt)≤ 2

}
.

Proof. Let Xt ∈ {0,1}|Ω| denote the random variable with Xt(ω) = I{ωt = ω}, and define Yt =

Xt−Eµ[Xt]. Let Zt = ∥
∑

τ∈[t] Yτ∥
1
. Since ∥Yt∥1 ≤ ∥Xt−Eµ[Xt]∥1 ≤ 2 for each t ∈ [T ], by Foucart

and Rauhut (2013, Corollary 8.46), we obtain for each t∈ [T ],

Pµ (Zt ≥Eµ[Zt] + s)≤ exp

(
− 3s2

4 (6t+6Eµ[Zt] + s)

)
.

Next, letting Zt,ω = |
∑

τ∈[t] Yτ (ω)| for ω ∈Ω, we obtain

Eµ[Zt] =
∑
ω∈Ω

Eµ[Zt,ω]
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=
∑
ω∈Ω

Eµ[
√
Z2

t,ω]

≤
∑
ω∈Ω

√
Eµ[Z2

t,ω]

=
∑
ω∈Ω

√∑
τ∈[t]

Varµ[Yτ (ω)]

=
√
t ·
∑
ω∈Ω

√
µ(ω)(1−µ(ω))

≤
√
|Ω|t,

where the first inequality follows from Jensen’s inequality, and the third equality follows from the

fact that, since Eµ[Yt(ω)] = 0, we have E[Z2
t,ω] =

∑
τ∈[t]Varµ[Yτ (ω)]. The final step follows from a

straightforward optimization. Thus, we obtain

Pµ

(
Zt ≥

√
|Ω|t+ s

)
≤ exp

− 3s2

4
(
6t+6

√
|Ω|t+ s

)
 .

Choosing s=Φt

√
|Ω|t for 0<Φt ≤ 2

√
t, and noting that Zt = t∥γt−µ∥1, we obtain

Pµ

(
∥γt−µ∥1 ≥

√
|Ω|
t

(1+Φt)

)
≤ exp

− 3Φ2
t |Ω|t

4
(
6t+6

√
|Ω|t+Φt

√
|Ω|t

)


≤ exp

(
−

3Φ2
t

√
|Ω|

4
(
12+Φt/

√
t
))

≤ exp

(
−3Φ2

t

√
Ω

56

)
.

The lemma statement then follows after noticing that for all t ∈ [T ], we have ∥γt−µ∥1 ≤ ∥γt∥1 +

∥µ∥1 ≤ 2. □

Appendix C: Proofs from Section 4

This section provides the proofs of the propositions in Section 4. Throughout, we use the same

notation as in the main text.

Proof of Proposition 2. Observe that for ϵ >
p20D

4
, we have 4ϵ

p20D
> 1, and hence the specified

bound is trivial. Hence, hereafter, we assume ϵ≤ p20D

4
.

To begin, let σ ∈ argmaxσ′∈Pers(µ) V (µ,σ′) denote the optimal signaling mechanism under the

distribution µ. Let A+ = {a ∈A :
∑

ω∈Ω σ(ω,a)> 0} denote the set of all actions that are recom-

mended with positive probability under σ. For each a∈A+, let µa denote the receiver’s posterior

belief (under signaling mechanism σ) upon receiving the action recommendation a. Note that since

σ is persuasive under µ, we must have µa ∈Pa. By the splitting lemma (Aumann et al. 1995), it
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then follows that µ can be written as a convex combination
∑

a∈A+
waµa of {µa : a∈A+}, where

wa ∈ [0,1] is given by wa =
∑

ω∈Ω µ(ω)σ(ω,a).

We next explicitly construct a signaling mechanism σ̂. To simplify the proof argument, the

signaling mechanism σ̂ we construct is not a straightforward mechanism, in the sense that it reveals

more than just action recommendations for signals in S. Using revelation principle, one can construct

an equivalent straightforward mechanism σ̄ by coalescing (Anunrojwong et al. 2020) signals with

the same best response for the signal. We omit the details of this reduction. We start with some

definitions that are needed to construct the signaling mechanism σ̂.

Let ηa ∈Pa be such that B1(ηa,D)⊆Pa. For δ=
2ϵ

p0D
∈ [0,1], define ξa = (1− δ)µa + δηa ∈Pa for

each a∈A+ and let ξ =
∑

a∈A+
waξa. Furthermore, since µa ∈Pa and B1(ηa,D)⊆Pa, the convexity

of the set Pa implies that B1(ξa, δD)⊆Pa.

Since µ ∈ B0 ⊆ relint(∆(Ω)), we have 1
1−ρ

(µ− ρξ) ∈∆(Ω) for all small enough ρ > 0. Let ρ̄ ≜

sup
{
ρ∈ [0,1] : 1

1−ρ
(µ− ρξ)∈∆(Ω)

}
be the largest such value in [0,1], and define χ as

χ≜

{
1

1−ρ̄
(µ− ρ̄ξ) , if ρ̄ < 1;

µ, if ρ̄= 1.

Then, we obtain µ= ρ̄ξ+(1− ρ̄)χ. Furthermore, if ρ̄ < 1, we have

ρ̄=
∥χ−µ∥1

∥χ−µ∥1 + ∥µ− ξ∥1
≥ p0

p0 + δ
,

where the inequality follows from ∥µ− ξ∥1 ≤
∑

a∈A+
wa∥µa− ξa∥1 = δ

∑
a∈A+

wa∥ηa− ξa∥1 ≤ 2δ and

from the fact that χ lies in the boundary of ∆(Ω), which implies ∥χ−µ∥1 ≥ 2minω µ(ω)≥ 2p0.

With the preceding definitions in place, we are now ready to construct the mechanism σ̂. Let aω

be a best response for the receiver at state ω ∈Ω, and let S = {(ω,aω)∈Ω×A : χ(ω)> 0}. Consider

the signaling mechanism σ̂, with the set of signals A+ ∪S, defined as follows: for each ω ∈Ω, let

σ̂(ω, s)≜


ρ̄waξa(ω)

µ(ω)
, for s= a∈A+;

(1− ρ̄)χ(ω)

µ(ω)
, for s= (ω,aω)∈ S;

0, otherwise.

(5)

We now show that the signaling mechanism σ̂ is persuasive for all distributions in B1(µ, ϵ), in

the sense that for all signals s ∈ A+ it is optimal for the receiver to play s, and for all signals

s= (ω,aω)∈ S, it is optimal for the receiver to play aω. To see this, for any γ ∈B1(µ, ϵ), let γ(·|s)

denote the receiver’s posterior under signaling mechanism σ̂ upon receiving the signal s∈A+ ∪S.

For s= (ω,aω) ∈ S, we have γ(·|s) = eω, where eω is the belief that puts all its weight on ω ∈Ω.

Thus, upon receiving the signal s= (ω,aω) it is optimal for the receiver with the distribution γ to

take action aω. Thus, it only remains to show that signals s= a∈A+ are persuasive.
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For a∈A+, we have for ω ∈Ω,

µ(ω|a) = µ(ω)σ̂(ω,a)∑
ω′∈Ω µ(ω

′)σ̂(ω′, a)
= ξa(ω)

γ(ω|a) = γ(ω)σ̂(ω,a)∑
ω′∈Ω γ(ω

′)σ̂(ω′, a)
=

γ(ω)

µ(ω)
· ξa(ω)∑

ω′∈Ω
γ(ω′)ξa(ω′)

µ(ω′)

.

Then, using triangle inequality and some algebra, we obtain

∥γ(·|a)−µ(·|a)∥1 =
∑
ω∈Ω

|γ(ω|a)− ξa(ω)|

≤
∑
ω∈Ω

∣∣∣∣γ(ω|a)− γ(ω)

µ(ω)
· ξa(ω)

∣∣∣∣+∑
ω∈Ω

∣∣∣∣γ(ω)µ(ω)
· ξa(ω)− ξa(ω)

∣∣∣∣
≤ 2 · sup

ω∈Ω

ξa(ω)

µ(ω)
· ∥γ−µ∥1

≤ 2ϵ

p0
,

where in the final inequality, we have used minω µ(ω)≥ p0 to get supω∈Ω
ξa(ω)

µ(ω)
≤ 1

p0
. Since µ(·|a) = ξa,

this implies that γ(·|a)∈B1

(
ξa,

2ϵ
p0

)
=B1(ξa, δD)⊆Pa. Thus, the signal a∈A+ is persuasive for the

distribution γ ∈B1(µ, ϵ). Taken together, we obtain that the signaling mechanism σ̂ is persuasive

for all γ ∈B1(µ, ϵ).

The persuasiveness of σ̂ for all γ ∈B1(µ, ϵ) implies that

sup
σ′∈Pers(B1(µ,ϵ))

V (µ,σ′)≥ V (µ, σ̂)

=
∑
ω∈Ω

∑
a∈A+

µ(ω)σ̂(ω,a)v(ω,a)+
∑
ω∈Ω

∑
s∈S

µ(ω)σ̂(ω, s)v(ω,aω)

≥
∑
ω∈Ω

∑
a∈A+

ρ̄waξa(ω)v(ω,a)

= ρ̄
∑
ω∈Ω

∑
a∈A+

wa ((1− δ)µa(ω)+ δηa(ω))v(ω,a)

≥ ρ̄(1− δ)
∑
ω∈Ω

∑
a∈A+

waµa(ω)v(ω,a)

= ρ̄(1− δ)OPT(µ).

Thus, we obtain

Gap(µ,B1(µ, ϵ)) =OPT(µ)− sup
σ′∈Pers(B1(µ,ϵ))

V (µ,σ′)

≤ (1− ρ̄(1− δ))OPT(µ)

≤
(

4

p20D

)
ϵ,

where the final inequality follows from ρ̄≥ p0
p0+δ

, δ= 2ϵ
p0D

and OPT(µ)≤ 1. □
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Proof of Proposition 3. It is straightforward to verify that the following signaling mechanism

σ∗ ∈ Pers(µ∗) optimizes the sender’s expected utility among all mechanisms in Pers(µ∗):

σ∗(ω0, a1) = σ∗(ω0, a2) =
1

2
,

σ∗(ω1, a1) = σ∗(ω2, a2) =
1

2
+

D

2(1− p0)
,

σ∗(ω1, a2) = σ∗(ω2, a1) =
1

2
− D

2(1− p0)
,

σ∗(ω,a) = 0, otherwise.

Since the action recommendations are always in {a1, a2}, we obtain OPT(µ∗) = 1.

Recall that µ̄1 = µ∗ + ϵ
2
(e1− e2), µ̄2 = µ∗ + ϵ

2
(e2− e1). By the linearity of obedience constraints

and µ∗ = (µ̄1 + µ̄2)/2, it follows that Pers({µ∗, µ̄1, µ̄2}) can be obtained by imposing the obedience

constraints at distributions µ̄1 and µ̄2. The optimization problem maxσ{V (µ∗, σ) : σ ∈ Pers({µ̄1, µ̄2})}

can be solved to obtain the following optimal signaling mechanism:

σ̂(ω0, a1) = σ̂(ω0, a2) =
1

2
,

σ̂(ω1, a1) = σ̂(ω2, a2) =
X

Z
,

σ̂(ω1, a2) = σ̂(ω2, a1) =
Y

Z
,

σ̂(ω1, a3) = σ̂(ω2, a4) = 1− σ̂(ω1, a1)− σ̂(ω1, a2),

σ̂(ω,a) = 0, otherwise,

where

X = 2p0(1− p0− ϵ)(1− p0 +D)D2 + p0(1− p0 + ϵ)(1− p0−D− 2D2),

Y = p0(1− p0− ϵ)(1− p0− 3D+2D2)+ 2p0(1− p0 + ϵ)(1− p0−D)(1− 2D)D2,

Z = (1− p0 + ϵ)2(1− p0−D)(1− 2D)(1− p0−D− 2D2)

− (1− p0− ϵ)2(1− p0 +D)(1− p0− 3D+2D2).

The difference in the sender’s expected utility between using the optimal persuasive signaling

mechanism for the distribution µ∗ ∈B and using the optimal signaling mechanism that is persuasive

for all distributions in {µ∗, µ̄1, µ̄2} is given by

Gap(µ∗,Pers(µ∗, µ̄1, µ̄2)) = V (µ∗, σ∗)−V (µ∗, σ̂)

≥ ϵ

2

1/2+Dp0(1+ ϵ/2−Dp0−D)

Dp0 + ϵ

≥ ϵ

8Dp0
. □
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Appendix D: Proofs from Section 5

D.1. Proof of Theorem 2

In this section, we provide the proof of Theorem 2. In the process, we also state and prove several

helper lemmas used in the proof.

Proof of Theorem 2. In Lemma 2, we obtain the following bound on the regret:

RegI(Rai, µ∗, T )≤
∑
t∈[T ]

Gap(µ∗,B1(µ
∗,∥µ∗− γt∥1))+

∑
t∈[T ]

Gap(γt,Bt)

+
∑
t∈[T ]

∥µ∗− γt∥1 +
∑
t∈[T ]

(Eµ∗ [v(ωt, at)|ht]− v(ωt, at)) .

Now, from Proposition 2, we have

Gap(µ∗,B1(µ
∗,∥µ∗− γt∥1))≤

(
4

p20D

)
· ∥µ∗− γt∥1.

Thus, we obtain

RegI(Rai, µ∗, T )≤
∑
t∈[T ]

Gap(γt,Bt)+

(
4

p20D
+1

)∑
t∈[T ]

∥µ∗− γt∥1

+
∑
t∈[T ]

Eµ∗ [v(ωt, at)|ht]− v(ωt, at).

Finally, in Lemma 5, we show that on the event {µ∗ ∈Bt}, we have Gap(γt,Bt)≤
(

16
p20D

)
ϵt. Thus,

on the event {µ∗ ∈∩t∈[T ]Bt}, we obtain

RegI(Rai, µ∗, T )≤
(

20

p20D
+1

)∑
t∈[T ]

ϵt +
∑
t∈[T ]

Eµ∗ [v(ωt, at)|ht]− v(ωt, at)

≤
(

20

p20D
+1

)(
2+

T−1∑
t=1

√
|Ω|
t
(1+

√
ΦlogT )

)
+
∑
t∈[T ]

Eµ∗ [v(ωt, at)|ht]− v(ωt, at)

≤ 2

(
20

p20D
+1

)(
1+

√
|Ω|T (1+

√
ΦlogT )

)
+
∑
t∈[T ]

Eµ∗ [v(ωt, at)|ht]− v(ωt, at),

where in the final inequality, we have used the fact that
∑T−1

t=1 1/
√
t≤ 2

√
T .

From Theorem 1, we have Pµ

(
∩t∈[T ]Bt ̸∋ µ

)
≤ T 1− 3Φ

√
Ω

56 . For t∈ [T ], let Xt ≜Eµ∗ [v(ωt, at)|ht]−
v(ωt, at). Observe that Eµ∗ [Xt|ht] = 0 and |Xt| ≤ 1. Thus the sequence {Xt : t∈ [T ]} is a bounded

martingale difference sequence. Hence, from Azuma-Hoeffding (Boucheron et al. 2013), we obtain

for z ≥ 0,

Pµ∗

∑
t∈[T ]

Eµ∗ [v(ωt, at)|ht]− v(ωt, at)≥ z

< exp

(
−2z2

T

)
.
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Choosing z =
√
αT logT with α> 0, we have

Pµ∗

∑
t∈[T ]

Eµ∗ [v(ωt, at)|ht]− v(ωt, at)≥
√

αT logT

<
1

T 2α
.

After choosing α= 4Φ|Ω| and taking the union bound, we obtain with probability at least 1−
T 1− 3Φ

√
Ω

56 −T−8Φ|Ω|,

RegI(Rai, µ∗, T )≤ 2

(
20

p20D
+1

)(
1+

√
|Ω|T (1+2

√
ΦlogT )

)
. □

Lemma 2. The Rai algorithm satisfies

RegI(Rai, µ∗, T )≤
∑
t∈[T ]

Gap(µ∗,B1(µ
∗,∥µ∗− γt∥1))+

∑
t∈[T ]

Gap(γt,Bt)

+
∑
t∈[T ]

∥µ∗− γt∥1 +
∑
t∈[T ]

(Eµ∗ [v(ωt, at)|ht]− v(ωt, at)) .

Proof. From the definition (3) of regret, we have

RegI(Rai, µ∗, T ) =OPT(µ∗) ·T −
∑
t∈[T ]

v(ωt, at)

=OPT(µ∗) ·T −
∑
t∈[T ]

Eµ∗ [v(ωt, at)|ht] +
∑
t∈[T ]

(Eµ∗ [v(ωt, at)|ht]− v(ωt, at))

=
∑
t∈[T ]

(OPT(µ∗)−V (µ∗, σ[ht]))+
∑
t∈[T ]

(Eµ∗ [v(ωt, at)|ht]− v(ωt, at)) , (6)

where in the last equality, we have used the fact that Eµ∗ [v(ωt, at)|ht] = V (µ∗, σ[ht]). Moreover,

note that

OPT(µ∗)−V (µ∗, σ[ht]) =OPT(µ∗)−V (γt, σ[ht])+V (γt, σ[ht])−V (µ∗, σ[ht])

= (OPT(µ∗)−OPT(γt))+ (OPT(γt)−V (γt, σ[ht]))

+ (V (γt, σ[ht])−V (µ∗, σ[ht]))

= (OPT(µ∗)−OPT(γt))+Gap(γt,Bt)

+ (V (γt, σ[ht])−V (µ∗, σ[ht])) ,

where in the final equality, we have used the fact that OPT(γt)−V (γt, σ[ht]) =Gap(γt,Bt). Substi-

tuting the preceding expression into (6) yields

RegI(Rai, µ∗, T ) =
∑
t∈[T ]

(OPT(µ∗)−OPT(γt))+
∑
t∈[T ]

Gap(γt,Bt)

+
∑
t∈[T ]

(V (γt, σ[ht])−V (µ∗, σ[ht]))

+
∑
t∈[T ]

(Eµ∗ [v(ωt, at)|ht]− v(ωt, at)) .
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Now, in Lemma 3, we prove OPT(µ∗) − OPT(γt) ≤ Gap(µ∗,B1(µ
∗,∥µ∗− γt∥1)) +

1
2
· ∥µ∗− γt∥1.

Furthermore, in Lemma 4, we show that V (γt, σ[ht])− V (µ∗, σ[ht])≤ 1
2
∥µ∗− γt∥1. Putting it all

together yields the lemma statement. □

Lemma 3. For any µ1, µ2 ∈∆(Ω), we have

OPT(µ1)−OPT(µ2)≤Gap(µ1,B1(µ1,∥µ1−µ2∥1))+
1

2
· ∥µ1−µ2∥1.

Proof. Fix µ1, µ2 ∈∆(Ω). For i ∈ {1,2}, let σi ∈ argmaxσ′∈Pers(µi) V (µi, σ
′). By definition, we

have OPT(µi) = V (µi, σi).

Next, among all signaling mechanisms that are persuasive for all µ∈B1(µ1,∥µ1−µ2∥1), let σ3

maximize V (µ1, σ). Since σ3 is persuasive for µ2, we have OPT(µ2) = V (µ2, σ2)≥ V (µ2, σ3). Thus,

we have

OPT(µ1)−OPT(µ2) = V (µ1, σ1)−V (µ2, σ2)

≤ V (µ1, σ1)−V (µ2, σ3)

= V (µ1, σ1)−V (µ1, σ3)+V (µ1, σ3)−V (µ2, σ3)

≤Gap(µ1,B1(µ1,∥µ1−µ2∥1))+
1

2
· ∥µ1−µ2∥1.

Here, the inequality follows from the definition of Gap(·), and from Lemma 4. □

Lemma 4. For any µ1, µ2 ∈∆(Ω) and any signaling mechanism σ, we have

|V (µ1, σ)−V (µ2, σ)| ≤
1

2
· ∥µ1−µ2∥1.

Proof. Fix µ1, µ2 ∈∆(Ω). For any signaling mechanism σ that is persuasive under µ1, we have

for any x∈R,

|V (µ1, σ)−V (µ2, σ)|=

∣∣∣∣∣∑
ω∈Ω

(µ1(ω)−µ2(ω))

(∑
a∈A

σ(ω,a)v(ω,a)−x

)∣∣∣∣∣
≤ ∥µ1−µ2∥1 · sup

ω∈Ω

∣∣∣∣∣∑
a∈A

σ(ω,a)v(ω,a)−x

∣∣∣∣∣ ,
where we have used the Hölder’s inequality in the last line. Optimizing over x, together with the

fact that the sender’s valuations lie in [0,1], yields the result. □

Lemma 5. For t∈ [T ], on the event {µ∗ ∈Bt}, we have

Gap(γt,Bt)≤
(

16

p20D

)
ϵt.



Zu, Iyer, and Xu: Learning to Persuade on the Fly 41

Proof. On the event {µ∗ ∈Bt}, we have

γt(ω)≥ µ(ω)−∥γt−µ∗∥1

≥ p0− ϵt.

Thus, for ϵt <
p0
2
, we have minω γt(ω)≥ p0

2
. Using the same argument as in Proposition 2, we then

obtain

Gap(γt,Bt) =Gap(γt,B1(γt, ϵt))≤
(

4

Dminω γt(ω)2

)
ϵt ≤

(
16

p20D

)
ϵt.

For ϵt > p0/2, the bound holds trivially since 16ϵt/p
2
0D> 1. □

D.2. Proof of Theorem 3

We conclude this section with the proof of the lower bound in Theorem 3.

Proof of Theorem 3. For a distribution µ∈B0, define the event ET (µ) as

ET (µ) = {hT : σa[ht]∈ Pers(µ), for each t∈ [T ]} .

In words, under the event ET (µ), the signaling mechanism σa[ht] chosen by the algorithm a after

any history ht ∈ ET (µ) is persuasive for the distribution µ. Since the algorithm a is βT -robustly

persuasive, we obtain

Pµ (ET (µ))≥ 1−βT , for all µ∈B0.

Fix an ϵ∈ (0, 1−3p0
2

) to be chosen later, and consider the distributions µ∗ = (p0,
1−p0

2
, 1−p0

2
) and

µ̄1 = µ∗+ ϵ
2
(e1− e2) and µ̄2 = µ∗+ ϵ

2
(e2− e1), where ej is the belief that puts all its weight on state

ωj for j ∈ {1,2}. Observe that Pµ∗ (ET (µ∗))≥ 1− βT since µ∗ ∈ B0. Note that for each j ∈ {1,2}

and for all ϵ∈ (0, 1−3p0
2

), we have µ̄j ∈B0 and hence Pµ̄j
(ET (µ̄j))≥ 1−βT .

Now, on the event ET (µ∗) ∩ ET (µ̄1) ∩ ET (µ̄2), the signaling mechanism σa[ht] chosen by the

algorithm after any history ht is persuasive for all the distributions µ∗, µ̄1, µ̄2. Thus on the event

ET (µ∗)∩ET (µ̄1)∩ET (µ̄2), we have

T ·OPT(µ∗)−
∑
t∈[T ]

V (µ∗, σa[ht])≥ T ·Gap(µ∗,{µ∗, µ̄1, µ̄2})≥
ϵT

8Dp0
,

where the first inequality follows from the definition of Gap in (4), and the second inequality follows

from Proposition 3.
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Now, we have

2 |Pµ∗ (ET (µ̄1))−Pµ̄1
(ET (µ̄1))|2 ≤

∑
t∈[T ]

KL (µ∗||µ̄1)

=
1− p0

2
log

(
(1− p0)

2

(1− p0)2− ϵ2

)
T

=
1− p0

2
log

(
1+

ϵ2

(1− p0)2− ϵ2

)
T

≤ 1− p0
2

(
ϵ2

(1− p0)2− ϵ2

)
T,

where the first inequality is the Pinsker’s inequality, and the first equality is from the definition

of the Kullback-Leibler divergence, and the final inequality follows from log(1+x)≤ x for x≥ 0.

Thus, for ϵ < 1−p0
2

, we obtain

2 |Pµ∗ (ET (µ̄1))−Pµ̄1
(ET (µ̄1))|2 ≤

2ϵ2T

3(1− p0)
≤ ϵ2T,

where we have used p0 ≤ 1
|Ω| =

1
3
in the final inequality. Thus, we obtain that

Pµ∗ (ET (µ̄1))≥Pµ∗ (ET (µ∗))− |Pµ∗ (ET (µ̄1))−Pµ̄1
(ET (µ̄1))|

≥ 1−βT − ϵ

√
T

2
.

By the same argument, we obtain Pµ∗ (ET (µ̄2))≥ 1−βT − ϵ
√

T
2
.

By the linearity of the obedience constraints, we obtain that if σ ∈ Pers(µ̄1) ∩ Pers(µ̄2), then

σ ∈ Pers(µ∗). Thus, we have ET (µ̄1)∩ET (µ̄2)⊆ET (µ∗), and hence

Pµ∗(ET (µ∗)∩ET (µ̄1)∩ET (µ̄2)) =Pµ∗(ET (µ̄1)∩ET (µ̄2))

≥Pµ∗(ET (µ̄1))+Pµ∗(ET (µ̄2))− 1

≥ 1− 2βT − ϵ
√
2T .

Finally, by the Azuma-Hoeffding inequality, we obtain

Pµ∗

∑
t∈[T ]

V (µ∗, σa[ht])−
∑
t∈[T ]

v(ωt, at)<−
√
T

< e−1/2.

Taken together, we obtain that with probability at least 1− 2βT − ϵ
√
2T − e−1/2, we have

RegI(a, T,µ
∗) = T ·OPT(µ∗)−

∑
t∈[T ]

v(ωt, at)≥
ϵT

8Dp0
−
√
T .

For T ≥ T0 =
1

(1−3p0)2
, choosing ϵ= 1

32
√
T
≤ 1−3p0

2
, we obtain, with probability at least 1

3
− 2βT ,

RegI(a, T,µ
∗) = T ·OPT(µ∗)−

∑
t∈[T ]

v(ωt, at)≥
√
T

(
1

16Dp0
− 1

)
≥
√
T

32Dp0
,

for Dp0 < 1/32. □
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